A Review on Analysis and Design of Electromagnetic Pump

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Analysis and Design of Electromagnetic Pump Resincap Journal of Science & Engineering Volume 1, Issue 1, February 2017 A Review on Analysis and Design of Electromagnetic Pump Miss. Pallawi C. Dekate Prof. S.M. Kulkarni Pursuing ME (EPS) in P.E.S College of Engineering Associate Professor, department of Electrical Engineering, Aurangabad P.E.S College of Engineering Aurangabad [email protected] [email protected] ABSTRACT electromagnetic pump. One such pump had been Liquid metal loops are used for heat removal and for the study successfully designed and is operating at our lab at BARC. of certain magneto fluidic phenomenon like MHD (Magneto- 2. ELECTROMAGNETIC PUMPS Hydro Dynamic) effects. These loops operate at high In 1907 Northrup developed a hydrostatic pressure of several temperatures and carry fluids that are invariably toxic in inches of water via the interaction of a 600 ampere current nature. To ensure the purity of fluid in a closed loop and a magnetic field in mercury. He postulated that this effect application, non-intrusive electromagnetic pumps are used. could be utilized in an ammeter for measuring large currents. We have designed and analyzed a prototype electromagnetic The movement of a liquid metal by using a sliding and pump to be used in mercury loop for carrying out various rotating magnetic field was proposed by Chubb in 1915. studies. This Electromagnetic pump is designed using Bainbridge tested an alternating current conduction pump in permanent magnets which are mounted on the periphery of 1926. Einstein and Szilard proposed an annular linear the rotor, driven by a DC motor. The liquid metal flows in a induction pump for use with alkali metals in 1928. Several semi-circular duct surrounding the rotor. The paper brings out working models of this pump rated at about 2 kw were the qualitative and quantitative analyses of the pump as operated with mercury and liquid alloys of sodium and function of magnetization of the permanent magnets, the potassium. The design equations for this type of pump using speed of rotation of the pump and magnet pitch. This liquid bismuth were presented in a report by Feld and Szilard electromagnetic pump has been developed and is running in 1942. The flat linear induction pump is only one of many successfully in our lab at BARC. types of electromagnetic pumps for liquid metals. The principal of operation is the same for all electromagnetic Keywords pumps. It is the source of the current and magnetic field that Electromagnetic pump, liquid metals, permanent changes. Electromagnetic pumps can be divided in two main magnets, MHD. categories; they are the conduction pumps and the induction pumps. Conduction pumps may be operated either on alternating or direct current. Either type pump may be 1. INTRODUCTION identified by the electrodes, brazed to the pump duct wall, Electromagnetic pump is used for driving liquid metals in which supply the current from an external source to the liquid various industrial and research set ups. Liquid metals are metal. Conduction pumps have one primary advantage over invariable toxic and are mostly operated at high temperatures. the other electromagnetic pumps; they can be used to pump Loops used for the study of corrosion and MHD studies need even the typical heavy metals such as bismuth or mercury to maintain liquid metal purity within tight limits. with high resistivity, high density, and high viscosity. The Electromagnetic pumps provide nonintrusive method for current flowing through the liquid metal may be made as large driving liquid metals in loops. Mechanical seals are not as is necessary to overcome the effects of the heavy metals. required in these pumps; hence their chances of failures due to The biggest disadvantage of these pumps is the requirement of high temperatures and wear/tear get eliminated. extremely large currents, usually several thousand amperes at Electromagnetic pumps for liquid sodium loops are designed voltages of one or two volts. A direct current conduction using electromagnets and flow is maintained in pipes. pump can be operated either with a permanent magnet or an Electromagnetic pumps can also be designed using MHD electromagnet to produce the magnetic field. The phenomenon. Both these EMP are similar to conventional disadvantage of the awkward excitation requirements, as linear pumps material. mentioned earlier, is partially overcome by the use of a The EMP presented in this paper is similar to conventional relatively efficient homopolar generator with liquid metal centrifugal pump. Its key components are rare earth brushes. The use of conventional rectifiers is not permanent magnets. Rotor, DC motor, semi-circular duct and recommended for the larger pumps since they are inefficient, CRNGO backing iron. Permanent magnets bars are fitted on bulky, and expensive. Another requirement (and not always a the periphery of rotor and magnetized alternately along the disadvantage) for satisfactory operation of a direct current radially in and radially out directions. High strength NdFeB pump is the wetting of the duct wall by the liquid metal. The magnets are used as they have large remnant flux density. A performance characteristics of the direct current conduction DC motor is used to rotate the rotor at various speeds. pump are excellent as the pump is applicable in systems Rectangular channels provide passage for liquid metal flow. requiTing wide variations in power, pressure, and flow. In CRNGO laminated magnetic steel has been used to provide efficiency too, the direct current pump is unsurpassed by the low reluctance path return path for the flux. This paper other types of electromagnetic pumps. In order to avoid the provides theoretical, analytical and practical aspects of use of a homopolar generator, an alternating current conduction pump with its associated step-down transformer is 9 Resincap Journal of Science & Engineering Volume 1, Issue 1, February 2017 sometimes used. The immediate problems encountered with this pump are: lamination of magnetic circuit to reduce eddy- Where w is rotation speed of the motor-pump assembly in currents and iron losses and thereby improve the normally low revolutions per second and N is number of magnets mounted efficiency; physically larger pump; poor power factor; and on the rotor noisy operation. The alternating current conduction pump is ( ) limited in size because the power factor decreases rapidly with size at a constant frequency. However, larger pumps may V is velocity of fluid in the channel. be built if the frequency is sufficiently lowered. Normally, the reliable step-down transformer is employed near or is part of The pressure developed by the pump is directly proportional the pump, while alternate sources of supply may be located to rotational velocity of the pump and the square of magnetic remotely. The second category of electromagnetic pumps, the flux density. Another parameter which influences the induction pumps, always has alternating current induced in maximum pressure developed is the magnet pitch. In the the molten metal by a traveling or pulsating magnetic field. present context magnet pitch refers to the angular distance These pumps are normally, with one exception, used only between magnets. The dependence of maximum pressure with the typical light metals with higher conductivities so that developed, on magnetic pitch is not straight forward. The the induced currents will be sufficiently large. A classification pressure also depends on magnet size and dimensions of the of the most common types is: rotor. For optimum performance of the pump, magnet pitch Single-phase annular should be judiciously decided. This paper also discusses the qualitative effect of magnet pitch on Lorentz force generation. Polyphase helical Polyphase flat linear 5. Use of COMSOL Multiphysics Polyphase annular linear The FEM model of electromagnetic pump is solved as a Rotating magnet quasi-static magnetic problem using perpendicular induction current vector potential included in AC/DC module of 3. THEORY COMSOL. The problem was modeled as a time varying 2- A rotating magnetic field is generated in the air-gap using dimensional problem. Analysis is carried out on a cross alternately magnetized permanent magnets oriented in the section through the axial center of the rotor of the pump. The radial direction. The magnetic field cuts the conducting metal motion between the rotor and the stator is accounted by proper filled inside the channels. This induces eddy currents boundary conditions. The PDE solved is given in (4). in the conducting metal, which thereby experience a Lorentz force, whose direction is defined by the Fleming’s left hand rule. When analyzed in cylindrical coordinate system, (4) magnetic flux has a radial component in the airgap. Lorentz The rotation is modeled using a deformed mesh application forces are generated due to the interaction between radial mode (ALE); the center part (rotor) rotates with an angular magnetic field and the perpendicular induced currents due to velocity with respect to the fixed coordinates of the stator. changing radial magnetic field. The vector multiplication of The rotor and the stator are drawn as two separate geometry perpendicular induced currents and radial magnetic field objects and concept of assembly [2] is used. Advantages of produces unidirectional Lorentz force in the azimuthal using assembly are discussed in [2]. (tangential) direction. The magnitude of Lorentz force is equal to magnitude of eddy currents multiplied by the magnitude of magnetic flux density. 4. Governing Equations Please use a 9-point Times Roman font, or other Roman font with serifs, as close as possible in appearance to Times Roman in which these guidelines have been set. The goal is to have a 9-point text, as you see here. Please use sans-serif or non-proportional fonts only for special purposes, such as distinguishing source code text. If Times Roman is not available, try the font named Computer Modern Roman. On a Macintosh, use the font named Times. Right margins should be justified, not ragged.
Recommended publications
  • MHD Interaction in an Electromagnetic Pump for High Flow Rate Loop Of
    MHD interaction in an Electromagnetic Pump for high flow rate loop of ASTRID Sodium Fast Reactor secondary circuit -performances S Letout, Y Duterrail, Y Fautrelle, M Medina, F Rey, G Laffont To cite this version: S Letout, Y Duterrail, Y Fautrelle, M Medina, F Rey, et al.. MHD interaction in an Electromagnetic Pump for high flow rate loop of ASTRID Sodium Fast Reactor secondary circuit -performances. 8th International Conference on Electromagnetic Processing of Materials, Oct 2015, Cannes, France. hal- 01336384 HAL Id: hal-01336384 https://hal.archives-ouvertes.fr/hal-01336384 Submitted on 23 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MHD interaction in an Electromagnetic Pump for high flow rate loop of ASTRID Sodium Fast Reactor secondary circuit - performances 1 1 1 1 2 2 S. Letout , Y. Duterrail , Y. Fautrelle , M. Medina , F. Rey and G. Laffont 1Grenoble Institute of Technology/CNRS, SIMAP-EPM laboratory, 38402 Saint Martin d’Hères, France 2Commissariat à l’Energie Atomique et aux Energies Alternatives, 13108 Saint Paul Lez Durance, France Corresponding author: [email protected] Abstract The present paper deals with the analysis of the performances of a very large Annular Linear Induction Pumps (ALIP) for liquid sodium.
    [Show full text]
  • Formation of a Stationary State of Striations in a Vertically Inhomogeneous Ionosphere
    FORMATION OF A STATIONARY STATE OF STRIATIONS IN A VERTICALLY INHOMOGENEOUS IONOSPHERE N.D.Borisov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation, (IZMIRAN), 142190 Troitsk, Moscow region, Russia, [email protected] Abstract A new theory of a stationary state of striations is presented. Striations are treated as slowly varying with the height wave- guides that trap upper-hybrid resonance (UHR) oscillations. Modes with different discrete eigennumbers are retained in striations. Each mode interacts with a pump wave within a restricted range of heights. Thus the vertical ionospheric inhomogeneity determines the amplification of UHR oscillations. Anomalous absorption of the pump wave associated with the excitation of UHR oscillations in striations is calculated. Typical transversal scales and increase of the electron temperature in striations are estimated. INTRODUCTION One of the most interesting physical phenomena associated with the HF heating of the ionosphere is the formation of striations - elongated plasma depletions [1]. According to the theory striations are created as a result of conversion of the EM pump wave into UHR oscillations on small scale plasma irregularities [2]. UHR oscillations are trapped in striations and increase their amplitude due to the resonance (thermal parametric) instability. The mechanism of amplification of UHR oscillations and the formation of the stationary state of striations is a complicated theoretical problem. The existing modern theories treat this problem taking into account only the transversal plasma inhomogeneity [3, 4]. At the same time it is well-known that the longitudinal inhomogeneity of plasma changes the process of the waves interaction. The instability instead of absolute becomes of a convective type thus restricting the amplitude of the growing waves.
    [Show full text]
  • Study of MHD Instabilities in High Flowrate Induction Electromagnetic Pumps of Annular Linear Design Elena Martin Lopez
    Study of MHD instabilities in high flowrate induction electromagnetic pumps of annular linear design Elena Martin Lopez To cite this version: Elena Martin Lopez. Study of MHD instabilities in high flowrate induction electromagnetic pumps of annular linear design. Mechanics of materials [physics.class-ph]. Université Grenoble Alpes, 2018. English. NNT : 2018GREAI090. tel-02055466 HAL Id: tel-02055466 https://tel.archives-ouvertes.fr/tel-02055466 Submitted on 4 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE ALPES Spécialité : IMEP2 / MECANIQUE DES FLUIDES, PROCEDES, ENERGETIQUE Arrêté ministériel : 25 mai 2016 Présentée par « Elena MARTIN LOPEZ » Thèse dirigée par Yves DELANNOY codirigée par Fabrice BENOIT préparée au sein du SIMAP/EPM dans IMEP2 / MECANIQUE DES FLUIDES, PROCEDES, ENERGETIQUE Etude des instabilités Magnétohydrodynamiques dans les Pompes Electromagnétiques à induction annulaire à fort débit Thèse soutenue publiquement le « 29/11/2018 », devant le jury composé de : Mr. Alain JARDY Professeur, Ecole des Mines de Nancy, Président du jury et Rapporteur Mr. Thierry ALBOUSSIERE Directeur de Recherche, CNRS à Lyon, Rapporteur Mr. Christophe GISSINGER Maître de Conférence, Ecole Normale Supérieure de Paris, Membre Mr.
    [Show full text]
  • European Patent Bulletin 1983/30
    6 1983/30 •p*- 27.07.1983 Lîbl '.; y BibUofr,-, i 0 084 021 - 0 084 527 2 9. JULJ ,:.J ISSN 0170-9305 EPA-EPO-OE8 R^SSHHTRI "'»"»wffro -trz 'iurri, Europäisches European Bulletin européen Patentblatt Patent Bulletin des brevets Inhalt Contents Sommaire I Veröffentlichte Anmeldungen 2 I Published Applications 3 I Demandes publiées 3 1.1 Geordnet nach der Internationalen 1.1 Arranged in accordance with the 1.1 Classées selon la classification Patentklassifikation 8 International Patent internationale des brevets 8 1.2 Geordnet nach PCT-Veröffent- Classification 8 1.2 Classées selon les numéros de lichungsnummern 70 1.2 Arranged by PCT publication publication PCT 70 1.3(1) Geordnet nach Veröffentlichungs- number 70 13(1) Classées selon les numéros de nummern 71 1-3(1) Arranged by publication publication 71 1.3 (2) Geordnet nach Anmelde- number 71 1-3(2) Classées selon les numéros des nummern 75 1.3 (2) Arranged by application demandes 75 1.4 Geordnet nach Namen der number 75 1.4 Classées selon les noms des Anmelder 80 1.4 Arranged by nîme of demandeurs 80 1.5 Geordnet nach benannten applicant 80 1.5 Classées selon les Etats Vertragsstaaten 88 1.5 Arranged by designated contractants désignés 88 1.6 (1) Nach Erstellung des europäischen Contracting State 88 1-6(1) Documents découverts après Recherchenberichts ermittelte neue 1.6 (1) Documents discovered after comple- l'établissement du rapport de Schriftstücke — tion of the European search recherche européenne — 1.6 (2) Gesonderte Veröffentlichung des report — 1.6 (2) Publication séparée du
    [Show full text]
  • A Magnetohydrodynamic Study of Behavior in an Electrolyte Fluid Using Numerical and Experimental Solutions
    Ciência/Science A MAGNETOHYDRODYNAMIC STUDY OF BEHAVIOR IN AN ELECTROLYTE FLUID USING NUMERICAL AND EXPERIMENTAL SOLUTIONS L. P. Aoki, ABSTRACT M. G. Maunsell, This article examines a rectangular closed circuit filled with an electrolyte and H. E. Schulz fluid, known as macro pumps, where a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. The fluid conductor moves inside the circuit under magnetohydrodynamic effect (MHD). The MHD model has been derived from the Navier Stokes equation and coupled with the Maxwell equations for Newtonian incompressible Universidade de São Paulo fluid. Electric and magnetic components engaged in the test chamber assist Escola de Engenharia de São Carlos in creating the propulsion of the electrolyte fluid. The electromagnetic Departamento de Engenharia Mecânica forces that arise are due to the cross product between the vector density of induced current and the vector density of magnetic field applied. This is the Parque Arnold Schimidt Lorentz force. Results are present of 3D numerical MHD simulation for CP. 13566-590, São Carlos, São Paulo, Brasil newtonian fluid as well as experimental data. The goal is to relate the [email protected] magnetic field with the electric field and the amounts of movement produced, and calculate de current density and fluid velocity. An u-shaped and m-shaped velocity profile is expected in the flows. The flow analysis is performed with the magnetic field fixed, while the electric field is changed. Observing the interaction between the fields strengths, and density of the electrolyte fluid, an optimal configuration for the flow velocity is determined and compared with others publications.
    [Show full text]
  • Electromagnetic Pumps for Liquid Metals
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1965 Electromagnetic pumps for liquid metals Gutierrez, Alejandro U. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/12091 NPS ARCHIVE 1965 GUTIERREZ, A. ELECTROMAGNETIC \>\M?$ FOR LIQUID METALS ALEJANDRO U. GUTIERREZ CLAIR E. HECKATHORN \m H Hi »»»»»i iL^LlllJAhUiA:. •y iduatt; DUDLEY KNOX LIBRARY ifornia ELECTROMAGNETIC PUMPS FOR LIQUID METALS ***** Alejandro U. Gutierrez and Clair E. Heckathorn ELECTROMAGNETIC PUMPS FOR LIQUID METALS by Alejandro U. Gutierrez Lieutenant Junior Grade, Chilean Navy and Clair E. Heckathom Lieutenant, United States Navy Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING United States Naval Postgraduate School Monterey, California 19 6 5 ELECTRON GNETIC PUMPS FOR LIQUID METALS by Alejandro U. Gutierrez and Clair E. Heckathorn This work is accepted as fulfilling the thesis requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the United States Naval Postgraduate School ABSTRACT This thesis is the result of a literary research on the subject of electromagnetic pumps for liquid metals. The research was conducted at the U. S. Naval Postgraduate School to educate the authors in the field oi" electromagnetic pimps and to fulfill requirements for a Master of Science Degree i n Electrical Engineering. This thesis which is a synopsis or' information obtained from various technical publications is designed to give the reader information on the theory and design of electromagnetic pumps in general. Included are: (I) Description of operation of all types of conduction and induction pumps (?) The development of the DC conduction pump from the equivalent circuit.
    [Show full text]
  • Electromagnetic Pump
    Acta Scientific Applied Physics Volume 2 Issue 3 August 2021 Review Article Electromagnetic Pump Bahman Zohuri* Received: June 19, 2021 Galaxy Advanced Engineering, Chief Executive Officer (CEO), Albuquerque, New Published: July 09, 2021 Mexico, USA Bahman Zohuri. *Corresponding Author: Bahman Zohuri, Galaxy Advanced Engineering, Chief © All rights are reserved by Executive Officer (CEO), Albuquerque, New Mexico, USA. Abstract An electromagnetic pump is a pump that moves liquid in form of metal in particular, any electrically conductive liquid using electromagnetism phenomena. By law of physics of electromagnetic, a magnetic field can be defined as a set at right angles to the direction the liquid moves in, while a current is passing through it as well. This events, induce an electromagnetic force for the movements of the liquid. Applications of electromagnetic pump is including pumping liquid metal through any cooling system that areKeywords: installed inside of liquid metal container in particular. Electromagnetic; Pump; Liquid; Heat Transfer; Neutronic; Electric Current; Pumping Liquid Metal Introduction Electromagnetic Pumps are passive pump system and have Sodium is used as a coolant in fast breeder reactors because of a fairly good conductor of electricity also and this has led to de- - its excellent neutronic and heat transfer characteristics. Sodium is - velopment of many electromagnetic sensors and devices for use in been integrated in use for pumping liquid sodium in auxiliary cool ing circuits such as fill and drain from the container of such metal - lic liquid, and purification circuits of sodium cooled fast breeder liquid sodium. One such device is the electromagnetic pump which nuclear reactors, such as Liquid Metal Fast Breeder Reactor (LMF is used to pump liquid sodium in auxiliary circuits of a fast reactor BR).
    [Show full text]
  • An MHD Study of the Behavior of an Electrolyte Solution Using3d
    An MHD Study of the Behavior of an Electrolyte Solution using3D Numerical Simulation and Experimental results Luciano Pires Aoki*1, Harry Edmar Schulz1, Michael George Maunsell1 1University of São Paulo – School of Engineering at São Carlos, São Paulo, Brazil *Corresponding author: Av. Trabalhador São Carlense 400 (São Carlos, S.P.), Brazil, 13566-590 [email protected] Abstract: This article considers a closed water The electromagnetic pumping (EMP) of an circuit with square cross section filled with an electrically conductive fluid described in the electrolyte fluid. The conductor fluid was moved present study uses a direct current (DC) MHD using a so called electromagnetic pump, or EMP, device. Williams [2] described this concept in in which a permanent magnet generates a 1930, applying it to pump liquid metals in a magnetic field and electrodes generate the channel. In the DC EMP used in this study, a electric field in the flow. Thus, the movement is direct current was applied across a rectangular a consequence of the magnetohydrodynamic (or section of the closed channel filled with salt MHD) effect. The model adopted here was water, and submitted to a non-uniform magnetic derived from the Navier-Stokes equations for field perpendicular to the current. The Newtonian incompressible fluid using the k- interactions between current and magnetic fields ε turbulence model and coupled with the produced electromagnetic forces or Lorentz Maxwell equations. The equations were solved forces, driving the fluid through the channel. The using COMSOL Multiphysics® version 3.5a EMP is of growing interest in many industrial (2008). The 3D numerical simulations allowed applications, requiring precise flow controls, obtaining realistic predictions of the Lorentz enabling to induce flow deviations without forces, the current densities, and the movement mechanical moving parts or devices [3].
    [Show full text]
  • The Optimum Design Analysis of the Small DC Electromagnetic Pump with Loop-Supported Type
    Transactions of the Korean Nuclear Society Autumn Meeting Pyeongchang, Korea, October 30-31, 2014 The Optimum Design Analysis of the Small DC Electromagnetic Pump with Loop-Supported Type Geun Hyeong Lee* and Hee Reyoung Kim Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea *Corresponding author: [email protected] 1. Introduction Actually, the liquid sodium flows through the duct with the stainless steel as represented in Fig. 2, and so Electromagnetic pumps have been employed to the the resistance by it should be considered. Applying liquid metal experiments including transportation of Kirchhoff’s law for the circuit and balancing the electric liquid sodium in a sodium fast reactor (SFR). Recently, input and hydraulic output, the relation between the the approach to the heat exchange between sodium and input current and developed pressure including carbon dioxide, which is known to be less reactive with geometric variables was obtained in the Eq. (1). sodium than water, is being attempted in Korea. In the present study, the conceptual design of the DC ( ) electromagnetic (EM) pump, which has the flowrate of 3L/min and the developed pressure of 0.2 bar in the temperature of 500 , for circulating liquid sodium in Where the test loop for sodium-carbon dioxide reaction experiment is carried out. 2. Analysis { } The DC electromagnetic pump is divided into liquid sodium fluid with the high electrical conductivity, metal duct, magnet and electrode for generating electromagnetic force as shown in Fig.1. In Eq. (1), the input current is calculated on the change of the variables such as the length, width and height of the pump under the requirement of the flowrate of 3L/min and the developed pressure of 0.2bar.
    [Show full text]
  • Electromagnetic Pump
    ^ ^ ^ ^ I ^ ^ ^ ^ ^ ^ II ^ II ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ I ^ European Patent Office Office europeen des brevets EP 0 711 025 A2 EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt Cl.e: H02K 44/06 08.05.1996 Bulletin 1996/19 (21) Application number: 95307404.4 (22) Date of filing: 18.10.1995 (84) Designated Contracting States: • Dahl, Leslie Roy DE FR GB IT Livermore, California 94450 (US) • Patel, Mahadeo Ratilal (30) Priority: 04.11.1994 US 334644 San Jose, California 95111 (US) (71) Applicant: GENERAL ELECTRIC COMPANY (74) Representative: Pratt, Richard Wilson et al Schenectady, NY 12345 (US) London Patent Operation G.E. International Inc., (72) Inventors: Essex House, • Fanning, Alan Wayne 1 2/1 3 Essex Street San Jose, California 95112 (US) London WC2R 3AA (GB) • Olich, Eugene Ellsworth Aptos, California 95003 (US) (54) Electromagnetic pump (57) A support structure for clamping the inner coils and inner lamination rings of an inner stator column of an electromagnetic induction pump to prevent damag- ing vibration. A spine assembly, including a base plate, a center post and a plurality of ribs, serves as the struc- tural frame for the inner stator. Stacked alignment rings provide structure to the lamination rings and locate them concentrically around the spine assembly central axis. The alignment rings are made of a material having a high thermal expansion coefficient to compensate for the lower expansion of the lamination rings and, overall, provide an approximate match to the expansion of the inner flow duct. The net result is that the radial clamping provided by the duct around the stator iron is maintained (approximately) over a range of temperatures and op- erating conditions.
    [Show full text]
  • Observations of Plasma Stimulated Electrostatic Sideband
    CHINMOY MALLICK et.al OBSERVATIONS OF PLASMA STIMULATED ELECTROSTATIC SIDEBAND EMISSION AND HARMONIC DISTORTION: EVIDENCES OF OVER-DENSE PLASMA GENERATION INSIDE A MICROWAVE DISCHARGE ION SOURCE CHINMOY MALLICK Institute for Plasma Research, HBNI, Bhat, Gandhinagar, India E-mail: [email protected] MAINAK BANDYOPADHYAY ITER-India, Institute for Plasma Research, HBNI, Bhat, Gandhinagar, India RAJESH KUMAR Institute for Plasma Research, HBNI, Bhat, Gandhinagar, India Abstract Microwave discharge ion source (MDIS) is used in many applications including accelerators based neutron generators on suitable target through D-D or D-T fusion. In this device, the electromagnetic (EM) pump wave ( ) can propagate through plasma beyond cut-off plasma density by changing its polarity and/or decomposing into different daughter waves through which it transfer its energy and produces over dense plasma. In the present experiment, the plasma stimulated emission spectra was measured in the frequency range 0.5 to 3 to understand the different probable energy decay channels role; e.g. Electron Bernstein waves (EBWs), Ion cyclotron waves (ICWs), Lower hybrid oscillations (LHOs), Ion Bernstein waves (IBWs) and Ion Acoustic Waves (IAWs) etc. Present experimental device, MDIS contains eight distinct cavity modes under vacuum conditions (also called vacuum mode) within 300 MHz bandwidth around pump wave ( ) of the launched MW. Some of these vacuum modes are found to match with the plasma induced modes (plasma mode) and depends on the different plasma loading conditions. Resonant interaction between these two types of modes (vacuum mode and plasma mode) leads to the parametric decay into another lower frequency microwave and also electrostatic ion/electron type waves.
    [Show full text]
  • Zero Emissions Power Cycles
    Zero Emissions Power Cycles © 2009 by Taylor & Francis Group, LLC 87916_Book.indb 1 3/26/09 12:17:17 PM Zero Emissions Power Cycles E. Yantovsky J. Górski M. Shokotov Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2009 by Taylor & Francis Group, LLC 87916_Book.indb 3 3/26/09 12:17:17 PM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4200-8791-8 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher can- not assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]