Past, Present and Future of Active Radio Frequency Experiments in Space A
Total Page:16
File Type:pdf, Size:1020Kb
Past, Present and Future of Active Radio Frequency Experiments in Space A. V. Streltsov, Jean-Jacques Berthelier, A. A. Chernyshov, V. L. Frolov, F. Honary, M. J. Kosch, R. P. Mccoy, E. V. Mishin, M. T. Rietveld To cite this version: A. V. Streltsov, Jean-Jacques Berthelier, A. A. Chernyshov, V. L. Frolov, F. Honary, et al.. Past, Present and Future of Active Radio Frequency Experiments in Space. Space Science Reviews, Springer Verlag, 2018, 214 (8), pp.118. 10.1007/s11214-018-0549-7. insu-01916927 HAL Id: insu-01916927 https://hal-insu.archives-ouvertes.fr/insu-01916927 Submitted on 11 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PAST, PRESENT AND FUTURE OF ACTIVE RADIO FREQUENCY EXPERIMENTS IN SPACE A. V. Streltsov1,2, J.-J. Berthelier3, A. A. Chernyshov4, V. L. Frolov5,6, F. Honary7, M. J. Kosch7,8,9, R. P. McCoy10, E. V. Mishin11, M. T. Rietveld12,13 1Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA; 2National Academy of Sciences at Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, New Mexico, USA; 3LATMOS/IPSL, CNRS-UPMC-UVSQ, UPMC, Paris, France; 4Space Research Institute, Moscow, Russia; 5Nizhny Novgorod State University, Nizhny Novgorod, Russia; 6Kazan Federal University, Kazan, Russia; 7Lancaster University, Lancaster, United Kingdom; 8South African National Space Agency, Hermanus, South Africa; 9University of the Western Cape, Bellville, South Africa; 10Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA; 11 Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, New Mexico, USA; 12EISCAT, Ramfjordbotn, Norway; 13UiT The Arctic University of Norway, Tromsø, Norway. Abstract. Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field. Keywords. Active experiments. Ionospheric heating. HAARP. SURA. Arecibo. ULF waves. Ionospheric feedback instability. VLF waves. Ionospheric irregularities. Plasma instabilities. Wave-particle interactions. Artificial aurora. EISCAT. Ionosphere. DEMETER. Ionospheric resonator. 1 Acronyms AA - anomalous absorption AGW - acoustic gravity waves AKR - auroral kilometric radiation API - artificial periodic irregularity ASE - artificially stimulated emissions BF layer - the region of scattering from the bottom side F region BUM - broad upshifted maximum BUS - broad upshifted structure BSS - broad symmetrical structure CADI - Canadian Advanced Digital Ionosonde CNA - cosmic noise absorption DL - descending layer DM - downshifted maximum DMSP - Defense Meteorological Satellite Program DP - downshifted peak DSX - Demonstration and Science Experiments satellite DVH - descending virtual height DW - diagnostic wave EISCAT - European Incoherent SCATter Scientific Association EMIC - electromagnetic ion cyclotron wave ERP - effective radiated power FAC - field-aligned current FAI - field-aligned irregularity HAARP - High Frequency Active Auroral Research Program HIPAS - HIgh Power Auroral Stimulation observatory IAPD - Ion Acoustic Parametric Decay instability IAR - ionospheric Alfvén resonator IDM - intermediate downshifted maximum IDV - ionosphere disturbed volume IFI - ionospheric feedback instability IRI - Ionospheric Research Instrument ISR - incoherent scatter radar LH - lower hybrid LSI - large-scale irregularity LT - Langmuir turbulence MI - modulation instability MUIR - modular UHF ionospheric radar (at HAARP) MSI - medium-scale irregularity MZ - magnetic zenith NC - narrow continuum NEIEL - naturally enhanced ion acoustic line OTHR - over-the-horizon radar 2 OTSI - oscillating two-stream instability PDI - parametric decay instability PFISR - Poker Flat Incoherent Scatter Radar PL - plasma line PMSE - polar mesospheric summer echoes PMWE - polar mesospheric winter echoes PPI - ponderomotive parametric instability PW - pump wave QPO - quasi-periodic oscillation SAPS - subauroral polarization stream SAID - subauroral ion drift SEE - stimulated electromagnetic emission SLT - strong Langmuir turbulence SSA - striction self-action SSI - small-scale irregularity SSSI - supra-small-scale irregularity SST - super strong (Langmuir) turbulence TEC - total electron content TID - travelling ionospheric disturbance TPI - thermal parametric instability TSFI - thermal self-focusing instability UH - upper hybrid UHR - upper hybrid resonance UWE - upshifted wideband emission VPM - VLF and Particle Mapper satellite VPM - VLF and Particle Mapper satellite WALES - weak-altitude extent ion line enhancements WT - weak turbulence 3 Table of Contents 1 Introduction.............................................................................................................................................. 6 2 Experimental Facilities ............................................................................................................................ 8 2.1 Ground Facilities .............................................................................................................................. 8 2.1.1 HAARP ...................................................................................................................................... 9 2.1.2 SURA ....................................................................................................................................... 10 2.1.3 EISCAT ................................................................................................................................... 12 2.1.4 Arecibo .................................................................................................................................... 15 2.1.5 Science Topics ......................................................................................................................... 17 2.2 Satellites .......................................................................................................................................... 18 2.2.1 DEMETER Satellite ................................................................................................................ 20 2.2.2 Defense Meteorological Satellite Program (DMSP)................................................................ 22 2.2.3 The Demonstration and Science Experiments (DSX) Satellite ............................................... 24 2.2.4 RESONANCE Satellite ........................................................................................................... 26 3 Theory of the HF Ionospheric Modification .......................................................................................... 29 3.1 Propagation of O-Mode Waves ...................................................................................................... 30 3.2 Electrostatic Plasma Waves ............................................................................................................ 31 3.2.1 Wave-Particle Analogy ............................................................................................................ 33 3.3 Ponderomotive Parametric Instability (PPI) ................................................................................... 33 3.3.1 PPI in Isotropic Plasma (PPIL) ................................................................................................. 35 3.3.2 Parametric Decay Instability (PDIL) ........................................................................................ 36 3.3.3 Modulational Instability (MI) .................................................................................................. 36 3.4 PPI in the Plasma Resonance Layer ............................................................................................... 37 3.4.1 Strong Langmuir Turbulence (SLT) ........................................................................................ 38 3.4.2 Coexistence of WT and SLT Regimes .................................................................................... 40 3.4.3 Full-Wave Simulations of SLT at HAARP ............................................................................. 41 O 3.5 PPI in the Upper Hybrid Layer (PPI UH / EB ) .................................................................................... 42 3.5.1 Upper Hybrid PPI ...................................................................................................................