Mouse Svil Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Svil Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Svil Knockout Project (CRISPR/Cas9) Objective: To create a Svil knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Svil gene (NCBI Reference Sequence: NM_153153 ; Ensembl: ENSMUSG00000024236 ) is located on Mouse chromosome 18. 35 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 35 (Transcript: ENSMUST00000025079). Exon 3~8 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit enhanched adhesion and thrombus formation. Exon 3 starts from about 2.47% of the coding region. Exon 3~8 covers 28.0% of the coding region. The size of effective KO region: ~9890 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 6 7 8 35 Legends Exon of mouse Svil Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1969 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 455 bp section downstream of Exon 8 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(1969bp) | A(26.76% 527) | C(23.31% 459) | T(26.36% 519) | G(23.57% 464) Note: The 1969 bp section upstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(455bp) | A(23.96% 109) | C(27.47% 125) | T(29.01% 132) | G(19.56% 89) Note: The 455 bp section downstream of Exon 8 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 1969 1 1969 1969 100.0% chr18 + 5046917 5048885 1969 browser details YourSeq 60 1108 1268 1969 86.6% chr1 + 84859233 84859389 157 browser details YourSeq 49 1117 1267 1969 94.6% chr4 - 86890116 86890686 571 browser details YourSeq 48 1121 1271 1969 72.3% chr14 - 12103346 12103448 103 browser details YourSeq 42 1161 1268 1969 95.7% chr1 + 84859136 84859287 152 browser details YourSeq 38 1117 1268 1969 64.3% chr4 - 86889960 86890035 76 browser details YourSeq 37 238 282 1969 95.3% chr2 + 99661475 99661527 53 browser details YourSeq 34 248 334 1969 85.5% chr9 - 60497686 60497773 88 browser details YourSeq 34 1108 1176 1969 73.0% chr1 + 84859131 84859185 55 browser details YourSeq 29 1086 1221 1969 51.7% chr14 - 55088706 55088751 46 browser details YourSeq 28 1088 1177 1969 59.4% chr4 + 119778097 119778141 45 browser details YourSeq 28 1208 1268 1969 70.0% chr1 + 84859137 84859185 49 browser details YourSeq 27 1088 1131 1969 96.6% chr17 + 29725810 29725854 45 browser details YourSeq 27 1088 1131 1969 89.7% chr16 + 3745261 3745303 43 browser details YourSeq 26 1121 1179 1969 60.8% chr14 - 12103346 12103376 31 Note: The 1969 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 455 1 455 455 100.0% chr18 + 5058776 5059230 455 browser details YourSeq 48 143 446 455 96.2% chr10 - 15765370 16139797 374428 browser details YourSeq 32 161 201 455 94.6% chr13 - 85331781 85331836 56 browser details YourSeq 26 149 174 455 100.0% chr6 - 32033448 32033473 26 browser details YourSeq 26 152 189 455 84.3% chr12 - 57797751 57797788 38 browser details YourSeq 25 358 391 455 77.8% chr11 + 97191511 97191540 30 browser details YourSeq 25 182 214 455 96.3% chr11 + 86102538 86102579 42 browser details YourSeq 24 388 420 455 84.7% chr12 + 27966938 27966968 31 browser details YourSeq 21 149 169 455 100.0% chr13 + 29113781 29113801 21 browser details YourSeq 20 58 79 455 95.5% chr11 - 91279066 91279087 22 browser details YourSeq 20 152 171 455 100.0% chr11 - 8643235 8643254 20 browser details YourSeq 20 151 170 455 100.0% chr1 + 183936582 183936601 20 browser details YourSeq 20 152 171 455 100.0% chr1 + 180294997 180295016 20 Note: The 455 bp section downstream of Exon 8 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Svil supervillin [ Mus musculus (house mouse) ] Gene ID: 225115, updated on 10-Sep-2019 Gene summary Official Symbol Svil provided by MGI Official Full Name supervillin provided by MGI Primary source MGI:MGI:2147319 See related Ensembl:ENSMUSG00000024236 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as AU024053; B430302E16Rik Expression Broad expression in bladder adult (RPKM 33.3), heart adult (RPKM 16.5) and 20 other tissues See more Orthologs human all Genomic context Location: 18; 18 A1 See Svil in Genome Data Viewer Exon count: 44 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 18 NC_000084.6 (4920467..5119293) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 18 NC_000084.5 (5046587..5119291) Chromosome 18 - NC_000084.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 15 transcripts Gene: Svil ENSMUSG00000024236 Description supervillin [Source:MGI Symbol;Acc:MGI:2147319] Gene Synonyms B430302E16Rik Location Chromosome 18: 4,920,540-5,119,299 forward strand. GRCm38:CM001011.2 About this gene This gene has 15 transcripts (splice variants), 223 orthologues, 7 paralogues, is a member of 1 Ensembl protein family and is associated with 3 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Svil- ENSMUST00000126977.7 7907 2170aa ENSMUSP00000115078.1 Protein coding CCDS37720 Q8K4L3 TSL:5 203 GENCODE basic APPRIS P3 Svil- ENSMUST00000025079.15 7433 2170aa ENSMUSP00000025079.9 Protein coding CCDS37720 Q8K4L3 TSL:1 201 GENCODE basic APPRIS P3 Svil- ENSMUST00000140448.7 7423 2170aa ENSMUSP00000119803.1 Protein coding CCDS37720 Q8K4L3 TSL:5 210 GENCODE basic APPRIS P3 Svil- ENSMUST00000143254.7 6594 1766aa ENSMUSP00000119287.1 Protein coding CCDS84352 Q8K4L3 TSL:5 211 GENCODE basic APPRIS ALT2 Svil- ENSMUST00000210707.1 7633 2257aa ENSMUSP00000147843.1 Protein coding - A0A1B0GS91 TSL:5 215 GENCODE basic APPRIS ALT2 Svil- ENSMUST00000127297.7 6243 2056aa ENSMUSP00000115223.1 Protein coding - E9Q3Z5 TSL:5 204 GENCODE basic APPRIS ALT2 Svil- ENSMUST00000146723.1 507 169aa ENSMUSP00000115591.1 Protein coding - F6TBK9 CDS 5' and 3' 212 incomplete TSL:3 Svil- ENSMUST00000153016.7 497 40aa ENSMUSP00000121497.1 Protein coding - D3Z2X9 CDS 3' 214 incomplete TSL:2 Svil- ENSMUST00000131609.7 6420 2031aa ENSMUSP00000122242.1 Nonsense mediated - Q8K4L2 TSL:5 207 decay Svil- ENSMUST00000125512.7 4060 749aa ENSMUSP00000121972.1 Nonsense mediated - F6R6A4 CDS 5' 202 decay incomplete TSL:5 Svil- ENSMUST00000129543.1 1732 No - Retained intron - - TSL:2 205 protein Svil- ENSMUST00000131210.7 1560 No - Retained intron - - TSL:1 206 protein Svil- ENSMUST00000138258.7 1430 No - Retained intron - - TSL:5 208 protein Svil- ENSMUST00000139761.1 523 No - Retained intron - - TSL:2 209 protein Svil- ENSMUST00000148564.1 1218 No - lncRNA - - TSL:1 213 protein Page 7 of 9 https://www.alphaknockout.com 218.76 kb Forward strand 4.95Mb 5.00Mb 5.05Mb 5.10Mb Genes (Comprehensive set... Svil-203 >protein coding Svil-206 >retained intron Svil-202 >nonsense mediated decay Svil-208 >retained intron Svil-209 >retained intron Svil-211 >protein coding Svil-214 >protein coding Svil-205 >retained intron Svil-210 >protein coding Svil-213 >lncRNA Svil-215 >protein coding Svil-204 >protein coding Svil-207 >nonsense mediated decay Svil-201 >protein coding Svil-212 >protein coding Contigs AC124770.4 > < AC115928.10 Regulatory Build 4.95Mb 5.00Mb 5.05Mb 5.10Mb Reverse strand 218.76 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding Non-Protein Coding RNA gene processed transcript Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000025079 72.71 kb Forward strand Svil-201 >protein coding ENSMUSP00000025... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily SSF55753 Villin headpiece domain superfamily SMART Villin/Gelsolin Villin headpiece Prints Villin/Gelsolin Pfam Gelsolin-like domain Villin headpiece PROSITE profiles Villin headpiece PANTHER Villin/Gelsolin Supervillin Gene3D ADF-H/Gelsolin-like domain superfamily Villin headpiece domain superfamily CDD cd11289 cd11293 cd11280 cd11288 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend inframe deletion missense variant splice region variant synonymous variant Scale bar 0 200 400 600 800 1000 1200 1400 1600 1800 2170 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC.
Recommended publications
  • Androgen Receptor Interacting Proteins and Coregulators Table
    ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Pentosan Polysulfate Binds to STRO
    Wu et al. Stem Cell Research & Therapy (2017) 8:278 DOI 10.1186/s13287-017-0723-y RESEARCH Open Access Pentosan polysulfate binds to STRO-1+ mesenchymal progenitor cells, is internalized, and modifies gene expression: a novel approach of pre-programing stem cells for therapeutic application requiring their chondrogenesis Jiehua Wu1,7, Susan Shimmon1,8, Sharon Paton2, Christopher Daly3,4,5, Tony Goldschlager3,4,5, Stan Gronthos6, Andrew C. W. Zannettino2 and Peter Ghosh1,5* Abstract Background: The pharmaceutical agent pentosan polysulfate (PPS) is known to induce proliferation and chondrogenesis of mesenchymal progenitor cells (MPCs) in vitro and in vivo. However, the mechanism(s) of action of PPS in mediating these effects remains unresolved. In the present report we address this issue by investigating the binding and uptake of PPS by MPCs and monitoring gene expression and proteoglycan biosynthesis before and after the cells had been exposed to limited concentrations of PPS and then re-established in culture in the absence of the drug (MPC priming). Methods: Immuno-selected STRO-1+ mesenchymal progenitor stem cells (MPCs) were prepared from human bone marrow aspirates and established in culture. The kinetics of uptake, shedding, and internalization of PPS by MPCs was determined by monitoring the concentration-dependent loss of PPS media concentrations using an enzyme-linked immunosorbent assay (ELISA) and the uptake of fluorescein isothiocyanate (FITC)-labelled PPS by MPCs. The proliferation of MPCs, following pre-incubation and removal of PPS (priming), was assessed using the Wst-8 assay 35 method, and proteoglycan synthesis was determined by the incorporation of SO4 into their sulphated glycosaminoglycans.
    [Show full text]
  • Loss of Supervillin Causes Myopathy with Myofibrillar Disorganization and Autophagic Vacuoles
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2020-08-01 Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles Carola Hedberg-Oldfors University of Gothenburg Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Amino Acids, Peptides, and Proteins Commons, Cardiovascular Diseases Commons, Cell Biology Commons, Cellular and Molecular Physiology Commons, Molecular and Cellular Neuroscience Commons, Musculoskeletal Diseases Commons, Musculoskeletal, Neural, and Ocular Physiology Commons, Nervous System Diseases Commons, and the Neurology Commons Repository Citation Hedberg-Oldfors C, Luna EJ, Oldfors A, Knopp C. (2020). Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles. Open Access Articles. https://doi.org/10.1093/ brain/awaa206. Retrieved from https://escholarship.umassmed.edu/oapubs/4320 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. doi:10.1093/brain/awaa206 BRAIN 2020: 143; 2406–2420 | 2406 Loss of supervillin causes myopathy with Downloaded from https://academic.oup.com/brain/article/143/8/2406/5890852 by Medical Center Library user on 17 September 2020 myofibrillar disorganization and autophagic vacuoles Carola Hedberg-Oldfors,1,* Robert Meyer,2,* Kay Nolte,3,* Yassir Abdul Rahim,1 Christopher Lindberg,4 Kristjan Karason,5 Inger Johanne Thuestad,6 Kittichate Visuttijai,1 Mats Geijer,7,8 Matthias Begemann,2 Florian Kraft,2 Eva Lausberg,2 Lea Hitpass,9 Rebekka Go¨tzl,10 Elizabeth J.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • New Opportunities for Targeting the Androgen Receptor in Prostate Cancer
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press New Opportunities for Targeting the Androgen Receptor in Prostate Cancer Margaret M. Centenera,1,2 Luke A. Selth,1,3 Esmaeil Ebrahimie,3 Lisa M. Butler,1,2 and Wayne D. Tilley1,3 1Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of Adelaide, Adelaide SA 5005, Australia 2South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia 3Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia Correspondence: [email protected] Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resis- tance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies. rostate cancer is the most common solid used alone or in conjunction with competitive Ptumor in men, accounting for 21% of all AR antagonists that act peripherally to prevent cancers in the United States, and is the sec- residual androgens binding the AR (Labrie ond-leading cause of male cancer-related death 2011). Although initially effective, ADT eventu- (Siegel et al. 2016). Localized prostate cancer can ally fails, and patients progress to an incurable be cured with surgery and/or radiation therapy. and lethal stage of disease, known as castration- For advanced, metastatic, or recurrent prostate resistant prostate cancer (CRPC) (Scher et al.
    [Show full text]
  • Supervillin Binding to Myosin II and Synergism with Anillin Are Required for Cytokinesis
    University of Massachusetts Medical School eScholarship@UMMS Luna Lab Publications Radiology 2013-12-01 Supervillin Binding to Myosin II and Synergism with Anillin Are Required for Cytokinesis Tara C. Smith University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/luna Part of the Cell Biology Commons Repository Citation Smith TC, Fridy PC, Li Y, Basil S, Arjun S, Friesen RM, Leszyk JD, Chait BT, Rout MP, Luna EJ. (2013). Supervillin Binding to Myosin II and Synergism with Anillin Are Required for Cytokinesis. Luna Lab Publications. https://doi.org/10.1091/mbc.E12-10-0714. Retrieved from https://escholarship.umassmed.edu/luna/9 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Luna Lab Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. M BoC | ARTICLE Supervillin binding to myosin II and synergism with anillin are required for cytokinesis Tara C. Smitha, Peter C. Fridyb, Yinyin Lic, Shruti Basila,*, Sneha Arjuna,†, Ryan M. Friesena,‡, John Leszykd, Brian T. Chaitc, Michael P. Routb, and Elizabeth J. Lunaa aProgram in Cell and Developmental Dynamics, Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655; bLaboratory of Cellular and Structural Biology and cLaboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY 10065; dProteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA 01545 ABSTRACT Cytokinesis, the process by which cytoplasm is apportioned between dividing Monitoring Editor daughter cells, requires coordination of myosin II function, membrane trafficking, and central Yu-Li Wang spindle organization.
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Integrative Proteogenomics for Differential Expression and Splicing Variation in a DM1 Mouse Model
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.15.443842; this version posted May 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Integrative proteogenomics for differential expression and splicing variation in a DM1 mouse model Elizaveta M. Solovyeva %,¥,§, Stephan Utzinger #, Alexandra Vissières &, Joanna Mitchelmore #, Erik Ahrné &, Erwin Hermes &, Tania Poetsch &, Marie Ronco #, Michael Bidinosti #, Claudia Merkl #, Fabrizio C. Serluca ‡, James Fessenden $, Ulrike Naumann ¶, Hans Voshol &*, Angelika Meyer #*, Sebastian Hoersch%* * Authors contributed equally % Novartis Institute for Biomedical Research, NIBR Informatics, 4056 Basel, Switzerland # NIBR, Musculoskeletal Diseases, 4056 Basel, Switzerland & NIBR, Analytical Sciences and Imaging, 4056 Basel, Switzerland ¶ NIBR, Chemical Biology & Therapeutics, 4056 Basel, Switzerland $ NIBR, Musculoskeletal Diseases, Cambridge, MA 02139, USA ‡ NIBR Informatics, Cambridge, MA 02139, USA ¥ V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia § Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region 141701, Russia Abstract Dysregulated mRNA splicing is involved in the pathogenesis of many diseases including cancer, neurodegenerative diseases, and muscular dystrophies such as myotonic dystrophy type 1 (DM1). Comprehensive assessment of dysregulated splicing on the transcriptome and proteome level have been methodologically challenging, and thus investigations have often been targeting only few genes. Here, we performed a large-scale coordinated transcriptomic and proteomic analysis to characterize a DM1 mouse model (HSALR) in comparison to wild-type. Our integrative proteogenomics approach comprised gene- and splicing-level assessments for mRNAs and proteins.
    [Show full text]
  • Integrated Bioinformatics Analysis Reveals Novel Key Biomarkers and Potential Candidate Small Molecule Drugs in Gestational Diabetes Mellitus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434569; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus Basavaraj Vastrad1, Chanabasayya Vastrad*2, Anandkumar Tengli3 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. 3. Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434569; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Gestational diabetes mellitus (GDM) is one of the metabolic diseases during pregnancy. The identification of the central molecular mechanisms liable for the disease pathogenesis might lead to the advancement of new therapeutic options. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non GDM samples were analyzed with limma package. Gene ontology (GO) and REACTOME enrichment analysis were performed using ToppGene. Then we constructed the protein-protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]