Abstracts from the 53Rd European Society of Human Genetics (ESHG) Conference: Oral Presentations

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts from the 53Rd European Society of Human Genetics (ESHG) Conference: Oral Presentations European Journal of Human Genetics (2020) 28:1–140 https://doi.org/10.1038/s41431-020-00740-6 ABSTRACTS COLLECTION Abstracts from the 53rd European Society of Human Genetics (ESHG) Conference: Oral Presentations © European Society of Human Genetics 2020. Modified from the conference website and published with permission 2020 Volume 28 | Supplement 1 Virtual Conference June 6–9, 2020 Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. 1234567890();,: 1234567890();,: Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered “Modest”. Contributions above EUR 10 000.- per year are considered “Significant”. Presenting authors are indicated with asterisks in the contributor lists. Plenary Sessions somatic mutations affecting RNA splicing factors and tumorigenesis, the promise of correct mis-splicing for can- PL1 Opening Plenary cer therapy, and the recent creation of CRISPR/Cas-based technologies for conducting mRNA isoform-level genetic PL1.2 screens. RNA splicing defects in cancer R. K. Bradley: None. R. K. Bradley* PL2 What’s New? Highlight Session Fred Hutchinson Cancer Research Center, Seattle, WA, PL2.1 United States Evaluation of DNA methylation episignatures for diag- nosis and phenotype correlations in 42 Mendelian neu- Alternative RNA splicing, the process whereby a single rodevelopmental disorders gene can give rise to many different proteins, has long been known to be dysregulated in many cancers. Recent E. Aref-Eshghi1, J. Kerkhof1, V. Pedro2, Groupe DI France, studies have provided concrete genetic evidence that spli- M. Barat-Houari3, N. Ruiz-Pallares4, M. Alders5,M. cing dysregulation directly promotes cancer initiation Mannens5, P. Henneman5, R. C. Hennekam6, A. Ciolfi7,S. and progression. For example, genes encoding RNA spli- Pizzi7, M. Tartaglia7, P. M. Campeau8, J. Rousseau8,M.A. cing factors are recurrently mutated in both hematologic Levy1,2, L. Brick9, M. Kozenko9, T. B. Balci1,2,10,V.M. malignancies and solid tumors. However, uncovering the Siu1,2, A. Stuart1, M. Kadour1,11, J. Masters1,11,K. specific mechanisms by which these mutations promote Takano12, T. Kleefstra13,14, N. de Leeuw13,14, M. Field15,M. tumorigenesis has proven challenging. Here, I will discuss Shaw16, J. Gecz16,17, G. Merla18, P. J. Ainsworth1,2,H. recent progress in establishing functional links between Lin1,2, D. I. Rodenhiser2,19, M. J. Friez20, M. Tedder20,J.A. 2 J. del Picchia Lee20, B. R. DuPont20, R. E. Stevenson20, S. A. Skinner20, Conclusions: This study more than doubles the number C. E. Schwartz20, D. Genevieve4,21, B. Sadikovic1,2* of published syndromes with DNA methylation episigna- tures, and most significantly, opens new avenues for 1London Health Sciences Centre, London, ON, Canada, accurate diagnosis and clinical assessment in individuals 2Western University, London, ON, Canada, 3Universitaire de affected by these disorders. Montpellier, Montpellier, France, 4Centre Hospitalier Uni- E. Aref-Eshghi: None. J. Kerkhof: None. V. Pedro: None. versitaire de Montpellier, Montpellier, France, 5Amsterdam M. Barat-Houari: None. N. Ruiz-Pallares: None. M. Alders: University Medical Centers, Amsterdam, Netherlands, 6Uni- None. M. Mannens: None. P. Henneman: None. R. C. versity of Amsterdam, Amsterdam, Netherlands, 7Ospedale Hennekam: None. A. Ciolfi: None. S. Pizzi: None. M. Pediatrico Bambino Gesù, Rome, Italy, 8University of Tartaglia: None. P. M. Campeau: None. J. Rousseau: None. Montreal, Montreal, QC, Canada, 9McMaster University, M. A. Levy: None. L. Brick: None. M. Kozenko: None. T. Hamilton, ON, Canada, 10Lawson Health Research Institute, B. Balci: None. V. M. Siu: None. A. Stuart: None. M. London, ON, Canada, 11St. Joseph’s Health Care, London, Kadour: None. J. Masters: None. K. Takano: None. T. ON, Canada, 12Shinshu University Hospital, Nagano, Japan, Kleefstra: None. N. de Leeuw: None. M. Field: None. M. 13Radboud University Medical Center, Nijmegen, Nether- Shaw: None. J. Gecz: None. G. Merla: None. P. J. lands, 14Donders Center for Medical Neuroscience, Nijme- Ainsworth: None. H. Lin: None. D. I. Rodenhiser: None. gen, Netherlands, 15Hunter Genetics, Waratah, Australia, M. J. Friez: None. M. Tedder: None. J. A. Lee: None. B. R. 16The University of Adelaide, Adelaide, Australia, 17South DuPont: None. R. E. Stevenson: None. S. A. Skinner: Australian Health and Medical Research Institute, Adelaide, None. C. E. Schwartz: None. D. Genevieve: None. B. Australia, 18IRCCS-Casa Sollievo della Sofferenza, San Sadikovic: None. Giovanni Rotondo, Italy, 19Children’s Health Research Institute, London, ON, Canada, 20Greenwood Genetic Center, PL2.2 Greenwood, SC, United States, 21Montpellier University, Identity-by-descent detection across 487,409 British Montpellier, France samples reveals fine-scale population structure, evolu- tionary history, and trait associations Introduction: Genetic syndromes frequently present with overlapping clinical features and negative or ambiguous J. Nait Saada1*, G. Kalantzis1, D. Shyr2, M. Robinson3, genetic findings which can confound accurate diagnosis and A. Gusev4,5, P. Palamara1,6 clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA 1Department of Statistics, University of Oxford, Oxford, methylation patterns (episignatures). United Kingdom, 2Department of Biostatistics, Harvard T. Materials and Methods: Peripheral blood episignatures H Chan School of Public Health, Boston, MA, United can be used for diagnostic testing as well as for the States, 3Department of Computer Science, University of interpretation of ambiguous genetic test results. We present Oxford, Oxford, United Kingdom, 4Brigham & Women’s here an approach to episignature mapping of the largest Hospital, Division of Genetics, Boston, MA, United States, number of genetic syndromes studied to date (n = 42), which 5Department of Medical Oncology, Dana-Farber Cancer has allowed the identification of 34 robust disease-specific Institute, Boston, MA, United States, 6Wellcome Centre for episignatures. Human Genetics, University of Oxford, Oxford, United Results: We examine emerging patterns of overlap, as well Kingdom as similarities and hierarchical relationships across these episignatures to highlight their key features as related to The sharing of identical-by-descent (IBD) genomic seg- genetic heterogeneity, dosage effect, unaffected carrier status, ments is a key indicator of genetic relatedness between and incomplete penetrance. We demonstrate the necessity of individuals and plays an important role in a wide range of multiclass modeling for accurate genetic variant classification. genomic analyses. We developed a new method, called We demonstrate the utility of this tool in resolving ambiguous FastSMC, that enables accurate biobank-scale detection of clinical cases and identification of previously undiagnosed IBD segments transmitted by common ancestors living up cases through mass screening of a large cohort of subjects to several hundreds of generations in the past. FastSMC with developmental delays and congenital anomalies. Finally, combines a fast heuristic search for IBD segments with we outline and present early data from a Canadian national accurate coalescent-based likelihood calculations and esti- clinical trial EpiSign-CAN currently enrolling 4000 patients mates the age of common ancestors transmitting IBD to assess impact of this novel diagnostic technology on regions. We applied FastSMC to 487,409 phased samples diagnosis of neurodevelopmental conditions. from the UK Biobank and detected the presence of ~214 billion IBD segments transmitted by shared ancestors within Abstracts from the 53rd European Society of Human Genetics (ESHG) Conference: Oral Presentations 3 the past 1,500 years. We quantified time-dependent shared Translational Medicine, Federico II University, Naples, ancestry within and across 120 postcodes, obtaining a fine- Italy, 12Telethon Institute of Genetics and Medicine, grained picture of genetic relatedness within the past two Pozzuoli, Naples, Italy, 13Department of Psychiatry, millennia in the UK. Sharing of common ancestors strongly Donders Institute for Brain, Cognition and Behaviour, correlates with geographic distance, enabling us to localise Radboud University Medical Center, Nijmegen, Nether- a sample’s birth coordinates from genomic data with a lands, 14Karakter Child and Adolescent Psychiatry Center, median error of 44 km. We analysed genomic regions with Nijmegen, Netherlands, 15Department of Psychiatry and unusually high density of shared ancestry, which is indi- Behavioral Sciences and the MIND Institute, University of cative of recent positive selection, and detected 12 genome- California, Davis, Sacramento, CA, United States, wide significant signals, including 7 novel sites. We found 16Department of Clinical Genetics, Leiden University IBD sharing to be highly predictive of the sharing of ultra- Medical Center (LUMC), Leiden, Netherlands, 17Depart- rare variants in exome sequencing samples from the UK ment of Neurosciences, Biomedicine and Movement Biobank, enabling us to detect 29 associations (20 of which Sciences, University
Recommended publications
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • The Emerging Landscape of Dynamic DNA Methylation in Early Childhood
    The emerging landscape of dynamic DNA methylation in early childhood Cheng-Jian Xu, Marc Jan Bonder, Cilla Söderhäll, Mariona Bustamante, Nour Baïz, Ulrike Gehring, Soesma Jankipersadsing, Pieter van der Vlies, Cleo van Diemen, Bianca van Rijkom, et al. To cite this version: Cheng-Jian Xu, Marc Jan Bonder, Cilla Söderhäll, Mariona Bustamante, Nour Baïz, et al.. The emerg- ing landscape of dynamic DNA methylation in early childhood. BMC Genomics, BioMed Central, 2017, 18, pp.25. 10.1186/s12864-016-3452-1. hal-01792686 HAL Id: hal-01792686 https://hal.archives-ouvertes.fr/hal-01792686 Submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Xu et al. BMC Genomics (2017) 18:25 DOI 10.1186/s12864-016-3452-1 RESEARCHARTICLE Open Access The emerging landscape of dynamic DNA methylation in early childhood Cheng-Jian Xu1,2*, Marc Jan Bonder2, Cilla Söderhäll3,4, Mariona Bustamante5,6,7,8, Nour Baïz9, Ulrike Gehring10, Soesma A. Jankipersadsing1,2, Pieter van der Vlies2, Cleo C. van Diemen2, Bianca van Rijkom2, Jocelyne Just9,11, Inger Kull12, Juha Kere3,13, Josep Maria Antó5,7,8,14, Jean Bousquet15,16,17,18, Alexandra Zhernakova2, Cisca Wijmenga2, Isabella Annesi-Maesano9, Jordi Sunyer5,7,8,14, Erik Melén19, Yang Li2*, Dirkje S.
    [Show full text]
  • List of Exhibits at IWM Duxford
    List of exhibits at IWM Duxford Aircraft Airco/de Havilland DH9 (AS; IWM) de Havilland DH 82A Tiger Moth (Ex; Spectrum Leisure Airspeed Ambassador 2 (EX; DAS) Ltd/Classic Wings) Airspeed AS40 Oxford Mk 1 (AS; IWM) de Havilland DH 82A Tiger Moth (AS; IWM) Avro 683 Lancaster Mk X (AS; IWM) de Havilland DH 100 Vampire TII (BoB; IWM) Avro 698 Vulcan B2 (AS; IWM) Douglas Dakota C-47A (AAM; IWM) Avro Anson Mk 1 (AS; IWM) English Electric Canberra B2 (AS; IWM) Avro Canada CF-100 Mk 4B (AS; IWM) English Electric Lightning Mk I (AS; IWM) Avro Shackleton Mk 3 (EX; IWM) Fairchild A-10A Thunderbolt II ‘Warthog’ (AAM; USAF) Avro York C1 (AS; DAS) Fairchild Bolingbroke IVT (Bristol Blenheim) (A&S; Propshop BAC 167 Strikemaster Mk 80A (CiA; IWM) Ltd/ARC) BAC TSR-2 (AS; IWM) Fairey Firefly Mk I (FA; ARC) BAe Harrier GR3 (AS; IWM) Fairey Gannet ECM6 (AS4) (A&S; IWM) Beech D17S Staggerwing (FA; Patina Ltd/TFC) Fairey Swordfish Mk III (AS; IWM) Bell UH-1H (AAM; IWM) FMA IA-58A Pucará (Pucara) (CiA; IWM) Boeing B-17G Fortress (CiA; IWM) Focke Achgelis Fa-330 (A&S; IWM) Boeing B-17G Fortress Sally B (FA) (Ex; B-17 Preservation General Dynamics F-111E (AAM; USAF Museum) Ltd)* General Dynamics F-111F (cockpit capsule) (AAM; IWM) Boeing B-29A Superfortress (AAM; United States Navy) Gloster Javelin FAW9 (BoB; IWM) Boeing B-52D Stratofortress (AAM; IWM) Gloster Meteor F8 (BoB; IWM) BoeingStearman PT-17 Kaydet (AAM; IWM) Grumman F6F-5 Hellcat (FA; Patina Ltd/TFC) Branson/Lindstrand Balloon Capsule (Virgin Atlantic Flyer Grumman F8F-2P Bearcat (FA; Patina Ltd/TFC)
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Targeting Mir-21-3P Inhibits Proliferation and Invasion of Ovarian Cancer Cells
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 24 Research Paper Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells Perla M. Báez-Vega1, Ileabett M. Echevarría Vargas1,2, Fatma Valiyeva1, Joel Encarnación-Rosado3, Adriana Roman3, Josean Flores4, María J. Marcos-Martínez5,6, Pablo E. Vivas-Mejía1,2 1Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 2Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 3Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 4Ponce Health Sciences University, Ponce, Puerto Rico 5Department of Pathology and Laboratory Medicine-University of Puerto Rico—School of Medicine, San Juan, Puerto Rico 6Puerto Rico Medical Services Administration, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Correspondence to: Pablo Vivas-Mejía, email: [email protected] Keywords: ovarian cancer, microRNAs, miR-21-3p, cisplatin, RBPMS Received: September 01, 2015 Accepted: April 18, 2016 Published: May 07, 2016 ABSTRACT MicroRNA-21 is overexpressed in most cancers and has been implicated in tumorigenesis. Accumulating evidence supports a central role for the miR-21 guide strand (miR-21-5p) in ovarian cancer initiation, progression, and chemoresistance. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in ovarian cancer cells. The aim of this study was to investigate the role of miR-21-3p and its target genes in cisplatin-resistant ovarian cancer cells. Expression profiling of miR-21-5p and miR-21-3p was performed in a panel of cancer cells by qPCR.
    [Show full text]
  • NOD-Like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy
    International Journal of Molecular Sciences Review NOD-like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy Rayne R. Lim 1,2,3, Margaret E. Wieser 1, Rama R. Ganga 4, Veluchamy A. Barathi 5, Rajamani Lakshminarayanan 5 , Rajiv R. Mohan 1,2,3,6, Dean P. Hainsworth 6 and Shyam S. Chaurasia 1,2,3,* 1 Ocular Immunology and Angiogenesis Lab, University of Missouri, Columbia, MO 652011, USA; [email protected] (R.R.L.); [email protected] (M.E.W.); [email protected] (R.R.M.) 2 Department of Biomedical Sciences, University of Missouri, Columbia, MO 652011, USA 3 Ophthalmology, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 652011, USA 4 Surgery, University of Missouri, Columbia, MO 652011, USA; [email protected] 5 Singapore Eye Research Institute, Singapore 169856, Singapore; [email protected] (V.A.B.); [email protected] (R.L.) 6 Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 652011, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-573-882-3207 Received: 9 December 2019; Accepted: 27 January 2020; Published: 30 January 2020 Abstract: Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM). International Diabetic Federations (IDF) estimates up to 629 million people with DM by the year 2045 worldwide. Nearly 50% of DM patients will show evidence of diabetic-related eye problems. Therapeutic interventions for DR are limited and mostly involve surgical intervention at the late-stages of the disease. The lack of early-stage diagnostic tools and therapies, especially in DR, demands a better understanding of the biological processes involved in the etiology of disease progression.
    [Show full text]
  • Androgen Receptor Interacting Proteins and Coregulators Table
    ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,686,188 B2 Gu Et Al
    US0066861.88B2 (12) United States Patent (10) Patent No.: US 6,686,188 B2 Gu et al. (45) Date of Patent: Feb. 3, 2004 (54) POLYNUCLEOTIDE ENCODING A HUMAN 4,469,863 A 9/1984 Tso et al. MYOSIN-LIKE POLYPEPTIDE EXPRESSED 4,476,301 A 10/1984 Imbach et al. PREDOMINANTLY IN HEART AND MUSCLE 4,708,871 A 11/1987 Geysen 5,023.243 A 6/1991 Tullis 5,034,506 A 7/1991 Summerton et al. (75) Inventors: Yizhong Gu, Sunnyvale, CA (US); 5,166,315 A 11/1992 Summerton et al. Yonggang Ji, San Mateo, CA (US); 5,177,196 A 1/1993 Meyer, Jr. et al. Sharron Gaynor Penn, San Mateo, CA 5,185,444 A 2/1993 Summerton et al. (US); David Kagen Hanzel, Palo Alto, 5,186,042 A 2/1993 Miyazaki CA (US); David Russell Rank, 5,188,897 A 2/1993 Suhadolnik et al. Fremont, CA (US); Wensheng Chen, 5,214,134 A 5/1993 Weis et al. Mountain View, CA (US); Mark E. 5,216,141 A 6/1993 Benner Shannon, Livermore, CA (US) 5,235,033 A 8/1993 Summerton et al. 5,264,423 A 11/1993 Cohen et al. (73) Assignee: Amersham PLC, Buckinghamshire 5,264,562 A 11/1993 Matteucci 5,264,564 A 11/1993 Matteucci (GB) 5,272,071 A 12/1993 Chappel (*) Notice: Subject to any disclaimer, the term of this 5,276,019 A 1/1994 Cohen et al. patent is extended or adjusted under 35 5,278.302 A 1/1994 Caruthers et al.
    [Show full text]
  • Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
    ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • ATP-Binding and Hydrolysis in Inflammasome Activation
    molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure.
    [Show full text]