Rehabilitation of Indigenous Browse Plant Species Following Exclosure Established on Communal Grazing Lands in South Tigray

Total Page:16

File Type:pdf, Size:1020Kb

Rehabilitation of Indigenous Browse Plant Species Following Exclosure Established on Communal Grazing Lands in South Tigray Atsbha et al. Ecological Processes (2019) 8:43 https://doi.org/10.1186/s13717-019-0197-1 RESEARCH Open Access Rehabilitation of indigenous browse plant species following exclosure established on communal grazing lands in South Tigray, Ethiopia, and implication for conservation Tesfay Atsbha*, Solomon Wayu, Nguse Gebretsadkan, Tesfay Gebremariam and Tsgehiwet Giday Abstract Background: Despite the wide use of indigenous browse plant species, there is almost no information on the rehabilitation of indigenous browse species following area exclosure (AE) established on communal grazing lands (CGL) in Southern Tigray. The objectives of this study were to assess the rehabilitation of browse plant species following AE establishment on CGL. A total of 61 and 59 plots of 10 × 10 m2 size were laid down at 50-m intervals along parallel line transects at AE and GCL, respectively. Data collected on vegetation attributes were subjected to analysis of t test (unequal variances) using R-software. Results: The Shannon diversity index of the browse plant species was 1.25 and 0.81 in AE and CGL, respectively (P < 0.001).TheoverallpopulationstructureofbrowseplantspeciesintheAEshowsareverseJ-shapedpopulationcurveand “good” regeneration status, which reveals that the future communities may be sustained. Leaf biomass and basal area of browse plant species were significantly higher in the AE than in CGL (P < 0.001). After exclusion of grazing, AE was found to have positive effects on diversity and aboveground biomass of browse plant species. Conclusions: The study gives an understanding of the diversity, the pattern of population and regeneration of the browse plant species, which may help in the management and conservation of the species. Our results indicate that grazing exclusion is an effective management strategy to restore browse plant species. We concluded that the establishment of AE had a positive effect on the rehabilitation of browse plant species diversity and improved population structure and regeneration potentials of degraded grazing lands. Long-term monitoring and evaluation systems will be required to gain an informed understanding of the roles played by area exclosures in the rehabilitation and conservation of browse palnt species diversity. Keywords: Browse, Rehabilitation, Restoration Background communities and over-browsing by livestock and game Browse plants, beside grasses, constitute one of the animals (Abule et al. 2005). As a result, encroachment cheapest sources of feed for ruminants (Ahamefule et al. by weeds and undesirable plants, which are plant species 2006). Particularly, fodder trees and shrubs could play that are classified as undesirable, noxious, injurious or both ecological and economic roles in livestock produc- poisonous like Lantana camara L. and Prosopis juliflora tion systems (Karki and Goodman 2009). However, the (Sw.) DC (Allen and Allen 1981; Asfaw and Thulin extensive utilization of the browse plants has increased 1989), has become a threat to the livestock production pressure on the native vegetation, resulting in degrad- systems in the Horn of Africa, especially in Ethiopia ation of the resources due to over-utilization by the (Amaha 2003; Gemedo et al. 2006). Gebremedhin (2000) stated that the misuse of natural resources has resulted in very serious land degradation in most places. Improv- * Correspondence: [email protected] Tigray Agricultural Research Institute, Alamata Agriculture Research Center, ing the management of the natural resources providing P.O. Box 56, Alamata, Ethiopia © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Atsbha et al. Ecological Processes (2019) 8:43 Page 2 of 9 ecological services (soil formation, nutrient cycling, and rehabilitation of indigenous browse species following ex- primary production (Alcamo, 2003; Zerihun et al. 2002); closure established on communal grazing lands in South gully stabilization, controlling accelerated soil erosion, Tigray, Ethiopia. reducing flood damage (Nedessa et al. 2005; Wolde et al. 2007) and immediate economic needs are the major re- Materials and methods search and development challenges for the degraded Description of the study area areas of northern Ethiopia in particular and drylands of The study was conducted in the South zone of Tigray se- East Africa in general. lected districts. It is located at 680 km North of Addis A common restoration practice in Ethiopia is the use of Ababa, the capital city of Ethiopia and 180 km South of area exclosure (AE) (Tekle 2001; Tekle and Bekele 2000; Mekele, the capital city of the Tigray regional state. The Asefa et al. 2003;Teferaetal.2005). In the current study, zone consists of five administrative districts, namely Raya we distinguished between small-scale exclosures used for Alamata, Alaje, Endamohoni, Ofla and Raya Azebo. The protecting livestock grazing (Desta and Oba 2004)andthe study was conducted at five sites (Raya Alamata, Emba large-scale multi-purpose degraded areas protected from Alaje, Endamohoni, Ofla and Raya Azebo) (Fig. 1). The human and livestock exploitation. Restoration of biodiver- sample of different sites was selected with the aim of sity using AE has not been evaluated in terms of the ef- encompassing a wide range of ecoregional diversity. The fects of management factors (i.e. AE versus communal Southern Tigray Zone is one of the seven zones of the re- grazing land (CGL)) on indigenous browse plant species gion bordering to the South and West with Amhara (BPS) diversity. We evaluated the restoration of BPS diver- Regional State, to the North with a South Eastern zone of sity in highly degraded mountain landscapes in Southern Tigray and to the East with Afar Regional State. Geo- Tigray, which were previously used for farming and com- graphically, it is located between 12° 15′ and 13° 41′ north munal grazing. latitude and 38° 59′ and 39° 54′ east longitude with an In the places where AE are established, particularly in the altitudinal range of 1350–3925 m.a.s.l. Based on the trad- southern part of the region, area exclosures are among the itional classification system, Southern zone covers Kola, green spots with considerable species diversity (Tefera et al. Weynadega and Dega agro-ecologies that enable to grow 2005; Betru et al. 2005). In exclosures, it is generally be- varied types of crops, livestock and tree species. It covers lieved that all the land resources will be protected from an area of 9446 km2 with a total population of 538,422. degradation. Although the restoration effects of AE have The Southern zone has experienced two rainfall seasons: been well studied (Kindeya 2003; Aerts et al. 2004; the short rainy season locally known as “Belgi” that occurs Descheemaker et al. 2006), chemical composition and usually from February to April and the main rain season digestibility of some browse plant species (Ammar et al. locally described as “Kiremti” that comes during June to 2004;Ahamefuleetal.2006; Melaku et al. 2010; September. On average, the area receives annually about Boufennara et al. 2012;Girmaetal.2015; Weldemariam 600 mm rainfall with a mean annual temperature of 25 °C. and Gebremichael 2015) and use and availability of tree The dominant soil types of the area are Vertisol, Fluvisols, and shrub resources (John and Moses 2005; Teferi et al. Luvisols and Cambisols, which implies the need for site- 2008), whereas there is no study that offers quantitative in- specific management practices to improve the productivity formation that helps to compare AE with the unprotected of the land (Kidane et al. 2016). areas with respect to browsing plant species restoration. In addition, in the Tigray region, Northern Ethiopia, some of Site selection and sampling procedure the studies conducted earlier (Gebremedhin 2000;Emiru A reconnaissance survey was conducted in the second et al. 2002; Kindeya 2003; Aerts et al. 2004; Tefera et al. week of September 2018, to collect baseline information, 2005; Muluberhan et al. 2006; Yayneshet et al. 2009;Wolde observe vegetation distribution and determine the num- and Aynekulu 2011, Wolde et al. 2011b, 2011c; Yayneshet ber of transect lines to be laid. The CGL was located 2011;WoldeandMastewal2013;Tsegayetal.2019;Tesfay 0.5–1 km away from the AE. It is assumed that the AE et al. 2019) were specifically trying to estimate the role of and CGL were homogenous in biophysical factors before AE in the recovery of woody vegetation diversity without the AEs are restricted for rehabilitation and are similar considering specifying indigenous browse species. It is very in topographic and climatic characteristics. The AE was important to have basic information to browse plant species established since 2004 and covers a total area of 500– diversity and biomass production, as these may facilitate 1500 ha, while the CGL covered 200–1300 ha (Southern the efficient and effective use of rangeland resources as live- Zone BOARD 2018). Adjacent to this AE, there is CGL stock feed. Therefore, this study was initiated to generate used by the community with no restriction to access re- quantitative information and thereby to evaluate whether source. Therefore, this study was conducted in these two AE has an impact on the density and diversity of BPS. land-use systems: AE having the restriction and rules of Thus, the objectives of this study were to assess resource access, in which people and grazing animals are Atsbha et al. Ecological Processes (2019) 8:43 Page 3 of 9 Fig. 1 Map of study area (location of study site) permanently kept outside this area, and the nearby CGL species in the field, vernacular names from key infor- having no restriction and rule of resource access. The mants were used and the specimens supported by vou- CGL areas were considered controls, while the AE repre- cher specimens by referring to Edwards et al.
Recommended publications
  • Local History of Ethiopia Ma - Mezzo © Bernhard Lindahl (2008)
    Local History of Ethiopia Ma - Mezzo © Bernhard Lindahl (2008) ma, maa (O) why? HES37 Ma 1258'/3813' 2093 m, near Deresge 12/38 [Gz] HES37 Ma Abo (church) 1259'/3812' 2549 m 12/38 [Gz] JEH61 Maabai (plain) 12/40 [WO] HEM61 Maaga (Maago), see Mahago HEU35 Maago 2354 m 12/39 [LM WO] HEU71 Maajeraro (Ma'ajeraro) 1320'/3931' 2345 m, 13/39 [Gz] south of Mekele -- Maale language, an Omotic language spoken in the Bako-Gazer district -- Maale people, living at some distance to the north-west of the Konso HCC.. Maale (area), east of Jinka 05/36 [x] ?? Maana, east of Ankar in the north-west 12/37? [n] JEJ40 Maandita (area) 12/41 [WO] HFF31 Maaquddi, see Meakudi maar (T) honey HFC45 Maar (Amba Maar) 1401'/3706' 1151 m 14/37 [Gz] HEU62 Maara 1314'/3935' 1940 m 13/39 [Gu Gz] JEJ42 Maaru (area) 12/41 [WO] maass..: masara (O) castle, temple JEJ52 Maassarra (area) 12/41 [WO] Ma.., see also Me.. -- Mabaan (Burun), name of a small ethnic group, numbering 3,026 at one census, but about 23 only according to the 1994 census maber (Gurage) monthly Christian gathering where there is an orthodox church HET52 Maber 1312'/3838' 1996 m 13/38 [WO Gz] mabera: mabara (O) religious organization of a group of men or women JEC50 Mabera (area), cf Mebera 11/41 [WO] mabil: mebil (mäbil) (A) food, eatables -- Mabil, Mavil, name of a Mecha Oromo tribe HDR42 Mabil, see Koli, cf Mebel JEP96 Mabra 1330'/4116' 126 m, 13/41 [WO Gz] near the border of Eritrea, cf Mebera HEU91 Macalle, see Mekele JDK54 Macanis, see Makanissa HDM12 Macaniso, see Makaniso HES69 Macanna, see Makanna, and also Mekane Birhan HFF64 Macargot, see Makargot JER02 Macarra, see Makarra HES50 Macatat, see Makatat HDH78 Maccanissa, see Makanisa HDE04 Macchi, se Meki HFF02 Macden, see May Mekden (with sub-post office) macha (O) 1.
    [Show full text]
  • Demography and Health
    SNNPR Southern Nations Nationalities and Peoples Demography and Health Aynalem Adugna, July 2014 www.EthioDemographyAndHealth.Org 2 SNNPR is one of the largest regions in Ethiopia, accounting for more than 10 percent of the country’s land area [1]. The mid-2008 population is estimated at nearly 16,000,000; almost a fifth of the country’s population. With less than one in tenth of its population (8.9%) living in urban areas in 2008 the region is overwhelmingly rural. "The region is divided into 13 administrative zones, 133 Woredas and 3512 Kebeles, and its capital is Awassa." [1] "The SNNPR is an extremely ethnically diverse region of Ethiopia, inhabited by more than 80 ethnic groups, of which over 45 (or 56 percent) are indigenous to the region (CSA 1996). These ethnic groups are distinguished by different languages, cultures, and socioeconomic organizations. Although none of the indigenous ethnic groups dominates the ethnic makeup of the national population, there is a considerable ethnic imbalance within the region. The largest ethnic groups in the SNNPR are the Sidama (17.6 percent), Wolayta (11.7 percent), Gurage (8.8 percent), Hadiya (8.4 percent), Selite (7.1 percent), Gamo (6.7 percent), Keffa (5.3 percent), Gedeo (4.4 percent), and Kembata (4.3 percent) …. While the Sidama are the largest ethnic group in the region, each ethnic group is numerically dominant in its respective administrative zone, and there are large minority ethnic groups in each zone. The languages spoken in the SNNPR can be classified into four linguistic families: Cushitic, Nilotic, Omotic, and Semitic.
    [Show full text]
  • Species Composition, Plant Community Structure and Natural Regeneration Status of Belete Moist Evergreen Montane Forest, Oromia Regional State, Southwestern Ethiopia
    Species composition, Plant Community structure and Natural regeneration status of Belete Moist Evergreen Montane Forest, Oromia Regional state, Southwestern Ethiopia Kflay Gebrehiwot1* and Kitessa Hundera2 1Department of Biology, Samara University, P.O.Box 132, Ethiopia (*[email protected]) 2Department of Biology, Jimma University, P.O.Box 378, Ethiopia ABSTRACT Belete forest is one of the very few remnant moist evergreen montane forests in Ethiopia. The objective of this work was to study the vegetation structure, composition and Natural regeneration status of Belete moist evergreen montane forest. To investigate the plant community structure, composition and regeneration status of Belete forest, line transects were laid down on the longest transect starting from the bottom valley to the top ridge. Sample quadrats 20m x20 m, 5m x 5m, 1m x 1m were laid for trees, shrubs, sapling and seedling, and herbaceous layer respectively in a nested form. The sample quadrats were laid down along transects at a distance of 50m from each other. A total of 69 quadrats were sampled. Vegetation classification was performed using PC - ORD for windows version 5.0. Five communities were recognized. Results showed that a total of 157 plant species representing 69 families and 135 genera were recorded. These were composed of 31.2% Herbs, 28.7% Trees, 26.1% Shrubs, 5.7% Climbers, 5.1% Liana, 1.9% Epiphytic herbs, and 1.3% herbaceous Ferns. The major families were Fabaceae and Asteraceae each represented by 10 species (6.4%), followed by Lamiaceae 9 (5.7%) and Rubiaceae 6 (3.8%). Other thirty three families consisting 19.8% were represented by one species only.
    [Show full text]
  • Woody Vegetation Composition, Structure and Conservation Status of Gole Forest in Kamba Woreda, Gamo Gofa Zone, SNNPR, Ethiopia
    Woody Vegetation Composition, Structure and Conservation Status of Gole Forest in Kamba Woreda, Gamo Gofa Zone, SNNPR, Ethiopia THESIS By Etalem Geresu May 2016 ARBA MINCH, ETHIOPIA Woody Vegetation Composition, Structure and Conservation Status of Gole Forest in Kamba Woreda, Gamo Gofa Zone, SNNPR, Ethiopia THESIS By Etalem Geresu Thesis Submitted to Department of Biology College of Natural Science School of Graduate Studies in partial fulfillment of the requirements for the Master of Science in Biology (Botanical sciences) May, 2016 ARBA MINCH, ETHIOPIA ii ARBA MINCH UNIVERSITY SCHOOL OF GRADUATE STUDIES DEPARTEMENT OF BIOLOGY EXAMINERS APPROVAL PAGE This is to certify that the thesis entitled “Woody Vegetation Composition, Structure and `Conservation Status of Gole Forest in Kamba Woreda, Gamo Gofa Zone, SNNPR, Ethiopia‟‟ by Etalem Geresu in partial fulfillment of the requirements for the degree of Master‟s science in with specialization in Botanical Sciences incorporate the rules and regulation of Arba Minch University and meet the accepted standard with respect to originality and quality. Name of chairperson Signature Date External Examiner Signature Date Internal Examiner Signature Date Principal advisor Signature Date i Declaration I hereby declare that this M.Sc. thesis is my original work and has not been presented for a degree in any other university, and all sources of material used for this thesis have been duly acknowledged. Name: Etalem Geresu Signature: _______________ Date: ___________________ ii Contents LIST OF TABLES
    [Show full text]
  • Impressions of Remote Area Electrification on Social and Economic Indicators
    AIMS Energy, 8(6): 1045–1068. DOI: 10.3934/energy.2020.6.1045 Received: 16 April 2020 Accepted: 14 October 2020 Published: 23 October 2020 http://www.aimspress.com/journal/energy Research article Impressions of remote area electrification on social and economic indicators Pawan Singh1, Baseem Khan2,*, Hassan Haes Alhelou3 and Om Prakash Mahela4 1 Department of CSE, Amity School of Engineering and Technology, Lucknow, India 2 Department of Electrical Engineering, Hawassa University, Ethiopia 3 Department of Electrical Power Engineering, Faculty of Mechanical and Electrical Engineering, Tishreen University, 2230 Lattakia, Syria 4 Power System Planning Division, Rajasthan Rajya Vidyut Prasaran Nigam Ltd., Jaipur, India * Correspondence: Email: [email protected]. Abstract: The development of any country depends on the electrification of rural regions as most of the population is residing in rural areas. Development is counted in terms of per capita energy consumption as well as even distribution of electricity. This paper presents an investigation of the impact of rural electrification on lighting, studying, energy expenditure, and income. Data has been collected from southern region rural villages. Some villages are connected and some are non- connected with the grid. To estimate the decision probability of getting connected from households, electrified and non-electrified villages are evaluated. These observations are used to determine the impact of electrification of rural areas on resultant indicators. The authors observed a minor positive effect on home study and income, whereas a major effect on lighting usage. Finally, the potential improvements in the socio-economical status of rural people by improved lighting are highlighted. Keywords: rural electrification; electrification impact assessment; propensity score; matching algorithms 1.
    [Show full text]
  • Survey on Composition of Perennial Vegetation in Sesa Mariam
    Meshesha et al. BMC Res Notes (2015) 8:622 DOI 10.1186/s13104-015-1562-5 RESEARCH ARTICLE Open Access Survey on composition of perennial vegetation in Sesa Mariam Monastery, Northwestern Ethiopia Birhanu Woldie Meshesha1, Berhanu Abraha Tsegay2* and Birhanu Belay Telake3 Abstract Background: Sustainable use of natural resources is one of the leading agenda because anthropogenic activities are leading to the depletion of these resources. Ethiopia is one of the biodiversity reach areas in the world, but the floral diversity is being threatened before they are fully explored. In line with this, very little is known about the flora of Sesa Mariam monastery, found in northwest Ethiopia. The area is one of the few remnant monastery forests in the country with old aged tree species. The aim of the study was to explore and document the floristic composition, density and regeneration status of perennial plant species in order to provide base line information for the sustainable utilization and management of the forest resources. Methodology: Fifty-one (51) quadrats (20 m 20 m each) were laid along established transect lines for census of perennial plant species. Two nested quadrats (2× m 10 m) were also used at the beginning and at the end of every main quadrat for the assessment of seedlings and saplings.× All woody plant species in each quadrat were counted and identified. Species diversity, richness and evenness were measured. Results: One hundred and thirteen (113) plant species belonging to 89 genera and 54 families were identified. Moreover, there were 7 more species outside the study quadrats. Of these plant species 10 were endemic, 92 were indigenous, and the remaining 11 were exotic cultivated trees and shrubs.
    [Show full text]
  • Woody Species Diversity, Structure and Regeneration Status
    Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.8, No.5, 2018 Woody Species Diversity, Structure and Regeneration Status in Weiramba Forest of Amhara Region, Ethiopia: Implications of Managing Forests for Biodiversity Conservation Zelalem Teshager 1* Mekuria Argaw 2 Abeje Eshete 1 1.Ethiopian Environment and Forest Research Institute, P.O. Box: 24536, Addis Ababa, Ethiopia 2.Center for Environmental Science, Addis Ababa University, P.O. Box: 1176, Addis Ababa, Ethiopia Abstract This study was conducted in Weiramba Forest, with the aim of determining the composition, structure, diversity and regeneration status of the woody species found in the area. A systematic sampling method was used to conduct the vegetation sampling. In order to collect vegetation data a total of 40 quadrats, each with the size of 10 m x 20 m at an interval of 100 m, were laid along the established transects at 200 m apart. For the assessment of seedling and sapling, two sub-quadrats each with the size of 2 m x 5 m were established at opposite sides of the main quadrat. In each main plot, data on species abundance, height, and Diameter at Breast Height (DBH) of woody plant species and altitude, slope and aspect were recorded. Woody Species Diversity analysis was carried out by using Shannon Weiner index. Results revealed that the total of 32 species representing 28 genera and 20 families were recorded in the forest. The Shannon Weiner diversity index and evenness were resulted to be 2.30 and 0.66, respectively. The population structure revealed in diameter and height class frequency distribution was to be Bell- shape with a very high decrease towards the lower and higher diameter and height classes.
    [Show full text]
  • (SNNPR) Overview of Livelihood Profiles
    Ethiopia Southern Nations, Nationalities and Peoples Region (SNNPR) Overview of Livelihood Profiles SNNPR Follow-On to Regional Livelihoods Baseline Study 2005 This document was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. ETHIOPIA SNNPR FOLLOW-ON TO REGIONAL LIVELIHOODS BASELINE STUDY Contract No. 663-C-00-05-00446-00 The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. SNNPR LIVELIHOOD PROFILES Introduction USAID FEWS NET PROJECT Regional Overview Contents Page INTRODUCTION........................................................................................... 1 THE USES OF THE PROFILES .................................................................... 1 KEY CONCEPTS....................................................................................... 2 INTRODUCTION TO THE HOUSEHOLD ECONOMY APPROACH................... 3 WHAT IS IN A LIVELIHOOD PROFILE........................................................ 6 METHODOLOGY ...................................................................................... 7 REGIONAL OVERVIEW............................................................................. 8 INTRODUCTION ....................................................................................... 8 GEOGRAPHY AND CLIMATE .................................................................... 9 RURAL LIVELIHOOD ZONES ...................................................................
    [Show full text]
  • Somalia Livelihood Maps
    Southern Nation, Nationalities and People’s Region, Ethiopia Livelihood Profiles January 2006 USAID FEWS NET ACTIVITY Contents Page INTRODUCTION........................................................................................... 1 THE USES OF THE PROFILES .................................................................... 1 KEY CONCEPTS....................................................................................... 2 INTRODUCTION TO THE HOUSEHOLD ECONOMY APPROACH................... 3 WHAT IS IN A LIVELIHOOD PROFILE........................................................ 6 METHODOLOGY ...................................................................................... 7 REGIONAL OVERVIEW............................................................................. 8 INTRODUCTION ....................................................................................... 8 GEOGRAPHY AND CLIMATE .................................................................... 9 RURAL LIVELIHOOD ZONES .................................................................... 11 RURAL SOURCES OF FOOD AND CASH: MAIN FINDINGS AND IMPLICATIONS ....................................................................... 13 RURAL LIVELIHOOD ZONE SUMMARIES.................................................. 20 Regional Overview 1 Introduction The Livelihood Profiles that follow document how the rural populations of the Southern Nations, Nationalities and Peoples’ Regional State (SNNPR) live. A livelihood is the sum of ways in which households make ends meet from
    [Show full text]
  • Oromia Forested Landscape Program (Oflp) Social Assessment (Sa )
    Strategic Environmental and Social Assessment (SESA) For the Implementation of REDD+ in Ethiopia INCLUDING THE OROMIA FORESTED LANDSCAPE PROGRAM (OFLP) SOCIAL ASSESSMENT (SA ) Ministry of Environment, Forest and Climate Change The National REDD+ Secretariat and Oromia REDD+ Coordination Unit Addis Ababa February 2017 Ministry of Environment, Forest and Oromia Environment, Forest and Climate Climate Change (MEFCC) The National Change Oromia REDD+ Coordination Unit REDD+ Secretariat E-mail: [email protected] , P. O. Box: 12760 Addis Ababa, Ethiopia Telephone: +251-115-58-05-36 Fax: +251-115-58-05-90 Web- https://reddplusethiopia.wordpress.com E-mail: [email protected] Addis Ababa, Ethiopia Project Team members : Sebsebe Demissew (Prof.-Team Leader, Biodiversity Specialist), Zerihun Woldu (Prof.-Vegetation Ecologist), Tamrat Bekele (PhD.- Vegetation Ecologist), Mekuria Argaw (PhD, Environment, Natural Resource Management), Gizaw Ebissa (MSc,-Environmental Analyst), Ketema Abebe (PhD.-Environmental Sociologist), Mellese Madda (PhD- Sociologist), Alemu Mekonen (PhD.-Economist), Ermias Aynekulu (PhD.- GIS Specialist and Vegetation Ecologist), Mellese Damtie (PhD.- Policy Analyst). Executive Summary ................................................................................................................... 1 General Concerns and Recommendations ........................................................................... 11 Environmental Concerns and Recommendations ...............................................................
    [Show full text]
  • Sheka Forest Biosphere Reserve Nomination Form
    UNESCO MAB Programme Sheka Forest Biosphere Reserve Nomination Form UNESCO-MAB National Committee Federal Democratic Republic of Ethiopia September 2011, Addis Ababa Federal Democratic Republic of Ethiopia – Sheka Forest Biosphere Reserve Nomination Form-Sept. 2011 2 Authors : Tadesse Woldemariam Gole, Fite Getaneh Maps : All maps used in this nomination form were prepared for the purpose of this application by Mr. Fite Getaneh, with geospatial data inputs of MELCA-Ethiopia Sheka Branch. Working Party for the Nomination Form: This nomination has been made possible by the Sheka Forest Biosphere Reserve Management Unit, which comprises of: Biosphere Reserve Management Unit members 1. Mr. Haile Kotacho- Sheka Zone Administration, Chairman 2. Mr. Alemu Adasho- Sheka Zone Trade and Industry Zone, Member 3. Mr. Tegegn Berhanu- Sheka Zone Department of Agriculture, Member 4. Mr. Molla Gessesse- Sheka Zone Finance and Economic Development Department, Member 5. Mr. Tadesse Wanano- Sheka Zone Justice Department, Member 6. Mr. Shiferaw Darito, Sheka Zone Development Association, Member 7. Ms. Keria Yasin- MELCA-Ethiopia, Member Nomination Process Coordinators: 1. Mr. Befekadu Refera, MELCA-Ethiopia, Addis Ababa 2. Ms. Keria Yasin, MELCA-Ethiopia, Masha Federal Democratic Republic of Ethiopia – Sheka Forest Biosphere Reserve Nomination Form-Sept. 2011 3 Table of Content PART I: SUMMARY ....................................................................................................................................................... 5 1. PROPOSED
    [Show full text]
  • ORIGINAL ARTICLE Woody Species Diversity and Structure of Aba Sena Natural Forest, West Wollega Zone, Ethiopia
    Woody Species Diversity and Structure Fekadu et al. 29 ORIGINAL ARTICLE Woody Species Diversity and Structure of Aba Sena Natural Forest, West Wollega Zone, Ethiopia Tekle Fekadu, Dasalegn Raga* and Dereje Denu Department of Biology, College of Natural Sciences, Jimma University, Ethiopia *Corresponding Author: [email protected] ABSTRACT Ecological study addressing species richness, diversity and vegetation structure is very important to produce data that could help conservationists to design a conservation strategy in the future. It was with this objective that the study was conducted on Aba Sena Natural Forest before it gets lost. Quadrats of 20m×20m (400 m²) were established at every 25 m elevation interval along five transect lines. Data on woody species richness, diversity, Diameter at breast Height (DBH) and Height were collected from 40 sampling quadrats. Species diversity was analyzed using Shannon-Wiener Diversity Index (H`). Importance value index (IVI) for woody species was determined by summing relative density, relative dominance and relative frequency. Hierarchical cluster analysis was carried out to determine plant community types. Overall, 69 woody species belonging to 67 genera and 36 families were identified. The overall Shannon-Wiener Diversity Index (H`) and the evenness values for the entire forest were 3.76 and 0.62, respectively. The most abundant woody species in their descending order were Ficus sur, Pouteria adolfriederici, Terminalia macroptera, Ficus vasta, Syzygium guineense and Albizia grandibracteata. The total basal area of the forest was 51.68 m² ha-1. Five plant community types with different number of vegetation quadrats were determined using cluster analysis. The current study did not include all aspects of the forest such as species regeneration status, anthropogenic impacts and ethnobotanical contribution of the forest for the local community and hence we recommend farther study on these and other aspects of the forest.
    [Show full text]