Comparative Environmental Analysis of Conventional and Hybrid Wheel Loader Technologies - a Life Cycle Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Comparative Environmental Analysis of Conventional and Hybrid Wheel Loader Technologies - A Life Cycle Perspective Omer Salman Yanbin Chen Master of Science Thesis Stockholm 2013 Omer Salman & Yanbin Chen Comparative Environmental Analysis of Conventional and Hybrid Wheel Loader Technologies - A Life Cycle Perspective Supervisors: Anna Björklund, Environmental Strategies Research, KTH Lisbeth Dahllöf, Volvo Group Trucks Technology (VGTT) Examiner: Göran Finnveden, Environmental Strategies Research, KTH Master of Science Thesis STOCKHOLM 2013 PRESENTED AT INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY TRITA-IM 2013:02 Industrial Ecology, Royal Institute of Technology www.ima.kth.se Abstract Volvo Construction Equipment is investigating the potential of hybrid wheel loaders. To determine if this new hybrid wheel loader concept is preferable from an environmental point of view to the latest G- series Volvo wheel loader, a comparative life cycle assessment (LCA) has been performed on the Volvo L150G wheel loader and a hybrid wheel loader concept. The complete machines have been studied throughout their life cycle: raw material extraction, material processing, manufacturing processes, transportation, use phase, and end of life. In order to quantitatively assess the environmental impact of all lifecycle stages, five different environmental indicators have been used: global warming potential, abiotic resource depletion potential, acidification potential, eutrophication potential and ozone depletion potential. In addition, a sensitivity analysis and two weighting methods are used to interpret the results. The results show that a hybrid wheel loader concept reduces environmental impacts significantly compared to a conventional L150G, except the impact category ADP (element). Moreover, the use phase has by far the greatest impact within the life cycle, for most impact categories (90% of the total life cycle impact). A sensitivity analysis on use phase with impacts also showed the limitations for use in China. Key words: LCA, wheel loader, hybrid technology, lithium-ion battery i Sammanfattning Volvo Construction Equipment undersöker potentialen av hybrid hjullastare. För att avgöra om ett hybrid hjullastare koncept har fördelar ur miljösynpunkt jämfört med en G-serien Volvo hjullastare har en jämförande livscykelanalys (LCA) utförts på Volvo L150G hjullastare och ett hybrid hjullastarkoncept. De kompletta maskinerna har studerats under hela deras livscykel: utvinning av råmaterial, materialbearbetning, tillverkningsprocesser, transport, användningsfas och slutet av skrotningsfasen. För att kvantitativt kunna bedöma miljökonsekvenserna av alla livscykelnskeden har fem olika miljöindikatorer använts: global uppvärmningspotential, abiotiska resursutarmningspotential, försurningspotential, övergödningspotential och ozonnedbrytingspotential. En känslighetsanalys och två viktningsmetoder har tillämpats för att tolka resultaten. Resultaten visar att ett hybrid hjullastarkoncept minskar miljöpåverkan avsevärt jämfört med en konventionell L150G, förutom påverkan från kategorin resursutarmningspotential. Dessutom har användningsprocessen i särklass störst påverkan inom livscykeln för de flesta effekt kategorier (90% av den totala livscykelpåverkan). En känslighetsanalys på användningsprocessen och dess effekter visade också på begränsningar för användning i Kina. Nyckelord: LCA, hjullastare, hybridteknik, litiumjonbatteri ii Preface This project is a comparative life cycle assessment (LCA) study conducted as a master’s thesis jointly by Omer Salman and Yanbin Chen from the Royal Institute of Technology (KTH) MSc. Sustainable Technology, Department of Industrial Ecology. Both students participated on independent and collaborative assignments within the project as per the guidance of their supervisors. Lisbeth Dahllöf from Volvo Group Truck Technology (VGTT) and Anna Björklund from KTH respectively supervised this project, giving expert advice and guidelines on Life Cycle Assessment, Software Analysis Tools and commercial databases. Ulf Jonson was coordinator to this project as a representative from Volvo Construction Equipment (VCE) where the study was carried out. iii Confidentiality Information used in this project has been declared confidential by Volvo Group Trucks Technology and Volvo Construction Equipment. For this reason, phase and process specific data has been left out the public version of this report. Suppliers are not mentioned by name and manufacturing locations are randomized. However, all data necessary for the LCA calculations is available for evaluation by all participating parties with the mutual consent of KTH, VGTT and VCE. iv Acknowledgements We would like to thank Volvo Group Trucks Technology (VGTT), Volvo Construction Equipment (VCE), Division of Environmental Strategies Research (FMS) and the department of Industrial Ecology of the Royal Institute of Technology (KTH) for commissioning, conducting and supervising this study. In particular Lisbeth Dahllöf, Ishtaq Ahmed and Ulf Josson, Joakim Unnebäck at Volvo have been very helpful. Finally, special thanks to our supervisor at KTH, Anna Björklund for being helpful and patient, and showing her commitment to our project. v Table of Content Abstract .................................................................................................................................................... i Sammanfattning .......................................................................................................................................ii Preface ..................................................................................................................................................... iii Confidentiality ......................................................................................................................................... iv Acknowledgements .................................................................................................................................. v Table of Content ...................................................................................................................................... vi List of Tables .......................................................................................................................................... viii List of Figures ........................................................................................................................................... ix List of Abbreviations ................................................................................................................................. x 1. Introduction ......................................................................................................................................... 1 2. Aim, Goal and Objectives ................................................................................................................ 3 2.1. Aim ........................................................................................................................................... 3 2.2. Goal .......................................................................................................................................... 3 2.3. Objectives ................................................................................................................................. 3 2.4. Reference Models and Methods .............................................................................................. 4 2.5. Report Outline .......................................................................................................................... 4 3. Background and Literature study .................................................................................................... 6 3.1. General Description of Volvo Group and Volvo CE .................................................................. 6 3.2. Construction Equipment .......................................................................................................... 6 3.3. Hybrid Technology and Heavy Vehicles ................................................................................... 7 3.4. Plug-in hybrid Vehicle Technology ........................................................................................... 8 3.5. Lithium-Ion Batteries.............................................................................................................. 10 4. Methodology ................................................................................................................................. 12 4.1. General description of LCA ..................................................................................................... 12 4.2. Goal and Scope definition ...................................................................................................... 13 4.3.1. Screening LCA ................................................................................................................. 14 4.3.2. Accounting LCA ............................................................................................................... 14 4.4. Product System ...................................................................................................................... 14 4.5. Functional Unit ....................................................................................................................... 14 4.6. System Boundaries ................................................................................................................