2.17 Evolution of Vertebrate Olfactory Subsystems

Total Page:16

File Type:pdf, Size:1020Kb

2.17 Evolution of Vertebrate Olfactory Subsystems 2.17 Evolution of Vertebrate Olfactory Subsystems H L Eisthen and G Polese, Michigan State University, East Lansing, MI, USA ª 2007 Elsevier Inc. All rights reserved. 2.17.1 Introduction 355 2.17.1.1 What is Olfaction? 355 2.17.1.2 Components of the Vertebrate Olfactory System 357 2.17.2 Evolutionary Changes in the Vertebrate Olfactory System 360 2.17.2.1 Chordates and Basal Craniates 360 2.17.2.2 Lampreys 361 2.17.2.3 Cartilaginous Fishes: Sharks, Skates and Rays, and Chimaeras 363 2.17.2.4 Ray-Finned Fishes 365 2.17.2.5 Lobe-Finned Fishes: Lungfishes and Coelacanths 370 2.17.2.6 Tetrapods: Amphibians, Reptiles, and Mammals 372 2.17.3 Conclusions 386 2.17.3.1 Evolutionary Changes in the Organization of the Olfactory Epithelium 386 2.17.3.2 Evolutionary Changes in the Organization of the Olfactory Bulbs 387 2.17.3.3 Evolutionary Changes in the Organization of Central Olfactory Projections 389 2.17.3.4 Evolution of Vertebrate Olfactory Subsystems 390 Glossary in the respiratory, circulatory, and digestive systems that detect gasses, ions, and nutrients. In general, these olfactory The olfactory system in any animal is the chemosensory systems consist of isolated sensory cells system primary sensory system that responds to that project to the spinal cord or hindbrain. These chemical stimuli emanating from a dis- systems will not be discussed here. tant source. In this article, we will consider three interrelated pheromone A chemical cue that, when released by an olfactory subsystems: the main olfactory system, or individual, elicits specific behavioral or physiological responses from olfactory system proper; the vomeronasal system; conspecifics. and the terminal nerve. The main olfactory system terminal The most anterior cranial nerve in verte- comprises receptor neurons located in a specialized nerve brates. The terminal nerve releases sensory epithelium in the nasal cavity, as well as the compounds into the nasal epithelia, central projections of these neurons. The receptor modulating activity of sensory receptor cells of the olfactory epithelium develop from the cells. nasal placode, and the ingrowing fibers of the devel- vomeronasal A discrete olfactory subsystem present in oping sensory neurons are involved in development system tetrapods that differs morphologically of the olfactory bulb at the rostral pole of the pro- from the olfactory system. Its function spective telencephalon (Gong and Shipley, 1995; is unclear. Graziadei and Monti-Graziadei, 1992; Long et al., 2003). 2.17.1 Introduction The vomeronasal system, or accessory olfactory system, also develops from the nasal placode, and is 2.17.1.1 What is Olfaction? present as a discrete sensory system only in tetrapods The term olfaction is commonly applied to chemosen- (see The Evolution of the Vomeronasal System). The sory systems that detect chemicals emanating from a vomeronasal epithelium is sequestered in the vomer- distant source. Other chemosensory systems generally onasal organ, also known as Jacobson’s organ require physical contact with the source for detection, (Figure 1). The sensory epithelium contains and this sensory modality is called gustation. The some what different cell types than does the vertebrate olfactory and gustatory systems are anato- main olfactory epithelium, and the vomeronasal mically distinct; the latter is discussed in a separate receptor neurons terminate in microvilli, whereas article (Evolution of Taste). Fibers of the trigeminal olfactory receptor neurons can terminate in cilia nerve also detect chemical stimuli, as dochemosensors or microvilli or both. In some vertebrates, 356 Evolution of Vertebrate Olfactory Subsystems ob aob en ns ob vno aob en vno ns Figure 1 Illustration of the locations of the olfactory epithelium, inside the nasal sac (ns), and of the vomeronasal organ (vno) in a frog and a snake. The nasal sac opens to an external nostril (en) on the dorsal surface of the snout, whereas the vomeronasal organ opens to the nasal sac in frogs and oral cavity in snakes. The axons of the olfactory receptor neurons project to the olfactory bulb (ob), and those of the vomeronasal receptor neurons project to the accessory olfactory bulb (aob). the axons of the vomeronasal receptor neurons refer to this structure simply as the ‘olfactory bulb’ form a separate cranial nerve, the vomeronasal to facilitate comparisons across vertebrates. nerve, but in others these axons run alongside the The terminal nerve, or nervus terminalis, is the olfactory nerve and the two cannot be distin- most anterior of the cranial nerves. It extends guished using conventional light microscopy. between the nasal cavity and basal forebrain, and, Vomeronasal receptor cell axons project to the because of its anatomy, has been thought to serve accessory olfactory bulb, a structure that is histo- sensory function (e.g., Demski and Northcutt, 1983; logically distinct from the main olfactory bulb Rossi et al., 1972). Nevertheless, recordings from (Figure 1). The secondary projections of the olfac- the terminal nerve have failed to detect sensory tory and accessory olfactory bulbs differ. The activity (Bullock and Northcutt, 1984; White and molecular, physiological, and anatomical differ- Meredith, 1995), and the terminal nerve is now ences between the vomeronasal and olfactory thought to function in modulating activity in the system suggest that the two subsystems serve dif- olfactory epithelium (reviewed in Oka, 1992; ferent behavioral functions, but the nature of this Wirsig-Wiechmann et al., 2002a). The terminal difference is unclear. Although the vomeronasal nerve usually contains a ganglion, the location of system is often presumed to be specialized for which varies across groups of vertebrates. The detecting pheromones, it responds to a variety of neurites extending outward from these bipolar odorants with differing behavioral significance in neurons sometimes comprise a separate nerve, all groups of tetrapods, and this presumption is but the fibers of the terminal nerve can also run unwarranted (see The Evolution of the within the olfactory or vomeronasal nerve, as illu- Vomeronasal System; Baxi et al., 2006; Halpern strated in Figure 2. The cells and fibers of the and Martı´nez-Marcos, 2003; Restrepo et al., terminal nerve contain neuromodulatory com- 2004; Shepherd, 2006). A different hypothesis pounds, including gonadotropin releasing posits that the vomeronasal system is specialized hormone (GnRH) and acetylcholine (reviewed in for detecting nonvolatile molecules. Although bet- Wirsig-Wiechmann et al., 2002a). The nerve can ter supported than the pheromone hypothesis, this also be immunohistochemically labeled with anti- hypothesis is still problematic (Baxi et al., 2006). sera directed against neuropeptide Y (NPY) and Throughout this article, we will refer to the nasal the molluscan cardioexcitatory neuropeptide chemosensory system present in all vertebrates as FMRFamide, but the two antisera may cross- the ‘olfactory system’ rather than the ‘main olfac- react with a single peptide (Chiba, 2000). We tory system’. Similarly, although it is common to use include the terminal nerve in this article not only the term ‘main olfactory bulb’ to refer to the pri- because of its role as a centrifugal portion of the mary target of the olfactory receptor cells in animals olfactory system, but also because the primary that possess a separate vomeronasal system, we will neurons of the terminal nerve develop from the Evolution of Vertebrate Olfactory Subsystems 357 pumping mechanisms, and nonsensory cells with motile cilia that create constant movement. Within the nasal cavity, the pseudostratified sen- sory epithelium contains three basic cell types (Figure 3b): olfactory receptor cells; sustentacular cells, a class of supporting cells; and basal cells, poa the progenitor cells that give rise to new receptor ob and sustentacular cells throughout life. The olfac- on tory receptor cells are bipolar neurons with a onf dendrite that terminates in cilia or microvilli or ns both. The membrane-bound odorant receptors are en localized to these processes, which are therefore Figure 2 Location of the terminal nerve around the nasal presumed to be the site of transduction (Menco, cavities and in the brain of a salamander. Anterior is down and 1997). The odorant receptors are part of the large to the left. The fibers of the terminal nerve extend between the preoptic area and nasal cavities, wrapping around the outside of superfamily of G-protein-coupled receptors the olfactory epithelium (lower left). en, external nostril; ns, nasal (GPCRs) that have seven membrane-spanning sac; ob, olfactory bulb; onf, olfactory nerve fascicles; on, olfac- domains (reviewed in Gaillard et al., 2004; tory nerve; poa, preoptic area. Mombaerts, 2004). The large family of odorant receptor genes has been suggested to contain two nasal placode (Schwanzel-Fukuda and Pfaff, fundamentally different classes that differ in the 1989), as do the olfactory and vomeronasal recep- size of the third extracellular loop (Freitag et al., tor neurons. 1995, 1998), although others have suggested that a larger number of groupings better describes the 2.17.1.2 Components of the Vertebrate Olfactory evolutionary history of the gene family (Niimura System and Nei, 2005). As depicted schematically in Elements of the olfactory system have been Figure 3c, the odorant receptor is coupled to an described from an evolutionary or comparative per- olfactory-specific G-protein (Gaolf), with alpha spective in several reviews
Recommended publications
  • Herping Around
    The Member Magazine of The Orianne Society Issue 10 • Winter 2019 Indigomagazine HERPING AROUND Field Herping with Conservation in Mind Herping in the Heartland The Poconos Mountains: Sunrise in Early June Herping the Trans-Pecos Herping: A Slippery (and Scaly) Slope Eastern Hog-nosed Snake Indigomagazine staff Christopher Jenkins Chief Executive Officer Heidi Hall Development Director Houston Chandler Longleaf Savannas Initiative Director Brannon Knight Longleaf Savannas Initiative Stewardship Coordinator Ben Stegenga Field Herping with 4 Longleaf Savannas Initiative Research Associate Jacob Barrett Conservation in Mind Longleaf Savannas Initiative Field Operations Coordinator Kiley Briggs Great Northern Forests Initiative Turtle Conservation Coordinator William Rodriguez Conservation Communications Coordinator Charli Palmer Program Manager Patty Li 12 18 Accountant Herping in the Heartland The Poconos Mountains: Sunrise in Early June contributors Bob Ferguson Chad Harrison Noah Fields Peter Kleinhenz Houston Chandler issue Indigo Magazine Issue 10, Winter 2019 Indigo Magazine is the member magazine of 24 The Orianne Society and is produced, designed 30 and edited by the staff of The Orianne Society. Herping the Trans-Pecos Herping: A Slippery (and Scaly) Slope CONTACT The Orianne Society 11 Old Fruit Stand Lane, Tiger, GA 30576 706-224-1359 [email protected] www.OrianneSociety.org 38 40 Upcoming Events @OrianneSociety Member Photos 2 ORIANNESOCIETY.ORG WINTER ISSUE 2019 Indigomagazine Go into almost any town in America and ask people if they know what message a birder is. Many people may not understand why, but they know that from our there are groups of people who like to go out and look at birds through binoculars. If you told them you are CEO a field herper however, you are likely to get some very strange looks.
    [Show full text]
  • Ecogeographical Distribution of the Herpetofauna of Indio Mountains
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2011-01-01 Ecogeographical Distribution of the Herpetofauna of Indio Mountains Research Station, Hudspeth County, Texas Ross Owen Couvillon University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Couvillon, Ross Owen, "Ecogeographical Distribution of the Herpetofauna of Indio Mountains Research Station, Hudspeth County, Texas" (2011). Open Access Theses & Dissertations. 2261. https://digitalcommons.utep.edu/open_etd/2261 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. ECOGEOGRAPHICAL DISTRIBUTION OF THE HERPETOFAUNA OF INDIO MOUNTAINS RESEARCH STATION, HUDSPETH COUNTY, TEXAS ROSS O. COUVILLON Department of Biological Sciences APPROVED: Jerry D. Johnson, Ph.D., Chair Carl S. Lieb, Ph.D. Eric Hagedorn, Ph.D. Benjamin C. Flores, Ph.D. Acting Dean of the Graduate School Copyright © by Ross O. Couvillon 2011 ECOGEOGRAPHICAL DISTRIBUTION OF THE HERPETOFAUNA OF INDIO MOUNTAINS RESEARCH STATION, HUDSPETH COUNTY, TEXAS By ROSS O. COUVILLON, B.Sc. THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Biological Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2011 ACKNOWLEDGEMENTS Partial funding for this project was provided by a grant from the East Texas Herpetological Society.
    [Show full text]
  • Herpetological Review
    Herpetological Review Volume 41, Number 2 — June 2010 SSAR Offi cers (2010) HERPETOLOGICAL REVIEW President The Quarterly News-Journal of the Society for the Study of Amphibians and Reptiles BRIAN CROTHER Department of Biological Sciences Editor Southeastern Louisiana University ROBERT W. HANSEN Hammond, Louisiana 70402, USA 16333 Deer Path Lane e-mail: [email protected] Clovis, California 93619-9735, USA [email protected] President-elect JOSEPH MENDLELSON, III Zoo Atlanta, 800 Cherokee Avenue, SE Associate Editors Atlanta, Georgia 30315, USA e-mail: [email protected] ROBERT E. ESPINOZA KERRY GRIFFIS-KYLE DEANNA H. OLSON California State University, Northridge Texas Tech University USDA Forestry Science Lab Secretary MARION R. PREEST ROBERT N. REED MICHAEL S. GRACE PETER V. LINDEMAN USGS Fort Collins Science Center Florida Institute of Technology Edinboro University Joint Science Department The Claremont Colleges EMILY N. TAYLOR GUNTHER KÖHLER JESSE L. BRUNNER Claremont, California 91711, USA California Polytechnic State University Forschungsinstitut und State University of New York at e-mail: [email protected] Naturmuseum Senckenberg Syracuse MICHAEL F. BENARD Treasurer Case Western Reserve University KIRSTEN E. NICHOLSON Department of Biology, Brooks 217 Section Editors Central Michigan University Mt. Pleasant, Michigan 48859, USA Book Reviews Current Research Current Research e-mail: [email protected] AARON M. BAUER JOSHUA M. HALE BEN LOWE Department of Biology Department of Sciences Department of EEB Publications Secretary Villanova University MuseumVictoria, GPO Box 666 University of Minnesota BRECK BARTHOLOMEW Villanova, Pennsylvania 19085, USA Melbourne, Victoria 3001, Australia St Paul, Minnesota 55108, USA P.O. Box 58517 [email protected] [email protected] [email protected] Salt Lake City, Utah 84158, USA e-mail: [email protected] Geographic Distribution Geographic Distribution Geographic Distribution Immediate Past President ALAN M.
    [Show full text]
  • Crotalus Lepidus Klauberi) from Southwestern Coahuila De Zaragoza, Mexico
    Western Wildlife 8:27–29 • 2021 Submitted: 31 July 2021; Accepted: 5 August 2021. PEER EDITED NOTES NEW PREY ITEM OF THE BANDED ROCK RATTLESNAKE (CROTALUS LEPIDUS KLAUBERI) FROM SOUTHWESTERN COAHUILA DE ZARAGOZA, MEXICO RICARDO PALACIOS-AGUILAR1,3, VÍCTOR EDUARDO RODRÍGUEZ-MALDONADO2, 1,2 AND RUFINO SANTOS-BIBIANO 1Instituto para el Manejo y Conservación de la Biodiversidad A. C. Calle Durango 23, Colonia José Vasconcelos 39047, Chilpancingo de los Bravo, Guerrero, México 2Calle Teopan, Fraccionamiento Teocaltiche 87024, Ciudad Victoria, Tamaulipas, México 3Corresponding author, e-mail: [email protected] Abstract.—We report for the first time the consumption of the Texas Banded Gecko (Coleonyx brevis) by the Banded Rock Rattlesnake (Crotalus lepidus klauberi) in southwestern Coahuila de Zaragoza, Mexico. We consider that this event might be more widespread given the broad sympatry of both species, albeit rarely documented. Key Words.—feeding; natural history; northwestern Mexico; Texas Banded Gecko Resumen.—Reportamos por primera vez el consumo del Gecko Bandeado de Texas (Coleonyx brevis) por la Cascabel Bandeada de Roca (Crotalus lepidus klauberi) en el suroeste de Coahuila de Zaragoza, México. Consideramos que este evento puede ser más común dada la amplia simpatría de ambas especies, pero rara vez documentado. Palabras Clave.—alimentación; Gecko Bandeado de Texas; historia natural; noroeste de México Diet is one of the most important aspects of organisms, On 17 September 2020, at 2136, we found an adult as it may vary within species, populations, and even male C. l. klauberi (Fig. 1) near the road between ontogenetically, and determines survival and life-history Ejido Vicente Guerrero and Tacubaya (25.61451°N, traits (Greene 1983, 1989; Beaupre 1995; Wiseman et al.
    [Show full text]
  • Competing Reproductive and Physiological Investments in an All‑Female Lizard, the Colorado Checkered Whiptail
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2020 Competing reproductive and physiological investments in an all‑female lizard, the Colorado checkered whiptail Lise M. Aubry Colorado State University - Fort Collins, [email protected] Spencer B. Hudson Utah State University, [email protected] Bryan M. Kluever NWRC, Gainesville, [email protected] Alison C. Webb Utah State University Susannah S. French Utah State University, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, and the Zoology Commons Aubry, Lise M.; Hudson, Spencer B.; Kluever, Bryan M.; Webb, Alison C.; and French, Susannah S., "Competing reproductive and physiological investments in an all‑female lizard, the Colorado checkered whiptail" (2020). USDA National Wildlife Research Center - Staff Publications. 2375. https://digitalcommons.unl.edu/icwdm_usdanwrc/2375 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Evolutionary Ecology (2020) 34:999–1016 https://doi.org/10.1007/s10682-020-10081-x ORIGINAL PAPER Competing reproductive and physiological investments in an all‑female lizard, the Colorado checkered whiptail Lise M.
    [Show full text]
  • Sexual Size Dimorphism and Feeding Ecology of Eutropis Multifasciata (Reptilia: Squamata: Scincidae) in the Central Highlands of Vietnam
    Herpetological Conservation and Biology 9(2):322−333. Submitted: 8 March 2014; Accepted: 2 May 2014; Published: 12 October 2014. SEXUAL SIZE DIMORPHISM AND FEEDING ECOLOGY OF EUTROPIS MULTIFASCIATA (REPTILIA: SQUAMATA: SCINCIDAE) IN THE CENTRAL HIGHLANDS OF VIETNAM 1, 5 2 3 4 CHUNG D. NGO , BINH V. NGO , PHONG B. TRUONG , AND LOI D. DUONG 1Faculty of Biology, College of Education, Hue University, Hue, Thua Thien Hue 47000, Vietnam, 2Department of Life Sciences, National Cheng Kung University, Tainan, Tainan 70101, Taiwan, e-mail: [email protected] 3Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 55000, Vietnam 4College of Education, Hue University, Hue, Thua Thien Hue 47000, Vietnam 5Corresponding author, e-mail:[email protected] Abstract.—Little is known about many aspects of the ecology of the Common Sun Skink, Eutropis multifasciata (Kuhl, 1820), a terrestrial viviparous lizard found in the Central Highlands of Vietnam. We measured males and females to determine whether this species exhibits sexual size dimorphism and whether there was a correlation between feeding ecology and body size. We also examined spatiotemporal and sexual variations in dietary composition and prey diversity index. We used these data to examine whether the foraging pattern of these skinks corresponded to the pattern of a sit-and-wait predator or a widely foraging predator. The average snout-vent length (SVL) was significantly larger in adult males than in adult females. When SVL was taken into account as a covariate, head length and width and mouth width were larger in adult males than in adult females.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • When Does Gene Flow Stop? a Mechanistic Approach to the Formation of Phylogeographic Breaks in Nature
    When Does Gene Flow Stop? A Mechanistic Approach to the Formation of Phylogeographic Breaks in Nature by Iris Holmes A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology in the University of Michigan 2020 Doctoral Committee: Assistant Professor Alison Davis Rabosky, Chair Research Professor Liliana Cortés Ortiz Professor Patrick Schloss Associate Professor Stephen Smith Iris A. Holmes [email protected] ORCID iD: 0000-0001-6150-6150 © Iris A. Holmes 2020 Dedication I dedicate this thesis to Michael Grundler, who is always there. ii Acknowledgements The research in this dissertation was supported by funding from the University of Michigan, including the Department of Ecology and Evolutionary Biology, the Museum of Zoology, and the Rackham Graduate School. It was also supported by grants from the Bureau of Land Management, and the STEPS Institute for Innovation in Environmental Research at the University of California. The research in my dissertation was greatly facilitated by the National Science Foundation Graduate Research Fellowship, the Rackham Predoctoral Fellowship, and the Rackham Graduate School Anna Olcott Smith Women in Science Award. I would like to thank my adviser, Alison Davis Rabosky, for her care and attention in developing both my strengths and weaknesses as a scientist. I would also like to thank the rest of my committee, Patrick Schloss, Stephen Smith, and Liliana Cortez Ortiz, for their help and support in completing my dissertation. In addition, I have had the privilege to work with excellent coauthors on the manuscripts in this dissertation, including Maggie Grundler, William Mautz, Ivan Monagan Jr, and Mike Westphal.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • Draft Section 21 Environmental Risk Assessment Guidance
    DRAFT SECTION 21 ENVIRONMENTAL RISK ASSESSMENT GUIDANCE FOR MARINE COASTAL ENVIRONMENTS IN HAWAII DRAFT - FEBRUARY 2018 DRAFT Contents 21.0 ECOLOGICAL RISK ASSESSMENT GUIDANCE FOR COASTAL MARINE ENVIRONMENTS IN HAWAII ................................................................................................................................... 1 21.1 FRAMEWORK FOR ECOLOGICAL RISK ASSESSMENTS .................................................................... 4 21.2 DETERMINE THE NEED FOR A SLERA ........................................................................................ 5 21.3 SCREENING LEVEL ECOLOGICAL RISK ASSESSMENT ...................................................................... 5 21.3.1 Preparing for a SLERA ...................................................................................................... 6 21.3.2 Components of a Marine Sediment SLERA .................................................................... 9 21.3.3 Step 1B: Screening Level Site Characterization Data..................................................... 10 21.3.3.1 Step 1b, Task 1. Describe Environmental Setting ...............................................10 21.3.3.2 Step 1b, Task 2. Compile Available Site-Specific and Reference Data on Chemicals and Endpoints .................................................................................................... 17 21.3.3.3 Table 21-Step 1b, Task 3. Select Assessment and Measurement Endpoints ...... 17 21.3.3.4 Step 1b, Task 4. Identify Complete Exposure Pathways and Potential
    [Show full text]
  • A LIST of the VERTEBRATES of SOUTH AUSTRALIA
    A LIST of the VERTEBRATES of SOUTH AUSTRALIA updates. for Edition 4th Editors See A.C. Robinson K.D. Casperson Biological Survey and Research Heritage and Biodiversity Division Department for Environment and Heritage, South Australia M.N. Hutchinson South Australian Museum Department of Transport, Urban Planning and the Arts, South Australia 2000 i EDITORS A.C. Robinson & K.D. Casperson, Biological Survey and Research, Biological Survey and Research, Heritage and Biodiversity Division, Department for Environment and Heritage. G.P.O. Box 1047, Adelaide, SA, 5001 M.N. Hutchinson, Curator of Reptiles and Amphibians South Australian Museum, Department of Transport, Urban Planning and the Arts. GPO Box 234, Adelaide, SA 5001updates. for CARTOGRAPHY AND DESIGN Biological Survey & Research, Heritage and Biodiversity Division, Department for Environment and Heritage Edition Department for Environment and Heritage 2000 4thISBN 0 7308 5890 1 First Edition (edited by H.J. Aslin) published 1985 Second Edition (edited by C.H.S. Watts) published 1990 Third Edition (edited bySee A.C. Robinson, M.N. Hutchinson, and K.D. Casperson) published 2000 Cover Photograph: Clockwise:- Western Pygmy Possum, Cercartetus concinnus (Photo A. Robinson), Smooth Knob-tailed Gecko, Nephrurus levis (Photo A. Robinson), Painted Frog, Neobatrachus pictus (Photo A. Robinson), Desert Goby, Chlamydogobius eremius (Photo N. Armstrong),Osprey, Pandion haliaetus (Photo A. Robinson) ii _______________________________________________________________________________________ CONTENTS
    [Show full text]
  • Chihuahuan Desert National Parks Reptile and Amphibian Inventory
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Chihuahuan Desert National Parks Reptile and Amphibian Inventory Natural Resource Technical Report NPS/CHDN/NRTR—2011/489 ON THE COVER Trans-Pecos Ratsnake (Bogertophis subocularis subocularis) at Big Bend National Park, Texas. Photograph by Dave Prival. Chihuahuan Desert National Parks Reptile and Amphibian Inventory Natural Resource Technical Report NPS/CHDN/NRTR—2011/489 Authors: Dave Prival and Matt Goode School of Natural Resources University of Arizona Editors: Ann Lewis Physical Science Laboratory New Mexico State University M. Hildegard Reiser Chihuahuan Desert Inventory & Monitoring Program National Park Service September 2011 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]