Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians

Total Page:16

File Type:pdf, Size:1020Kb

Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L. Collins, The Center for North American Herpetol- ogy, Lawrence, Kansas. STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition JOSEPH T. COLLINS Herpetologist Kansas Biological Survey The University of Kansas Lawrence, Kansas 66047 & TRAVIS W. TAGGAR T Associate Curator of Herpetology Sternberg Museum of Natural History Fort Hays State University Hays, Kansas 67601 2009 THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY Appropriate citation of this publication is as follows: Collins, Joseph T. and Travis W. Taggart. 2009. Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles, and Crocodilians. Sixth Edition. Publication of The Center for North Ameri- can Herpetology, Lawrence. iv + 44 pp. © 2009 by Joseph T. Collins & Travis W. Taggart Published April 2009 ISBN 0–9721937–1–5 Printed on acid-free paper. Printed by the Mennonite Press Newton, Kansas ii CONTENTS Introduction ..................................................................................................1 List of Current Scientific and Standard Common Names Class Amphibia Frogs (Order Anura) ................................................................................6 Salamanders (Order Caudata) ...............................................................10 Class Chelonia Straightneck Turtles (Order Cryptodira) ...............................................17 Class Eusuchia Crocodilians (Order Crocodylia)...........................................................20 Class Reptilia Amphisbaenians (Order Squamata) ......................................................21 Lizards (Order Squamata) .....................................................................21 Snakes (Order Squamata) ......................................................................27 Alien Species .............................................................................................37 Literature Cited ..........................................................................................42 About the Authors ......................................................................................43 iii Dedicated to the Memory of Carolus Linnaeus 23 May 1707 — 10 January 1778 John Edwards Holbrook 31 December 1796 — 8 September 1871 Charles Robert Darwin 12 February 1809 — 19 April 1882 Francis Harry Compton Crick 6 April 1928 — 28 July 2004 & with deep appreciation to James Dewey Watson whose combined contributions to science are amply reflected in this work iv INTRODUCTION This sixth edition of Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles, and Crocodilians, as was the case in the first five editions, is a checklist and reference to the standardized common names and currently recognized scientific names of all genera, spe- cies, and subspecies of amphibians, turtles, reptiles, and crocodilians native to the United States and Canada. When the number of native North American species is combined with the 64 introduced (non-native) taxa, this checklist covers 685 species. This edition is the result of two factors: 1) the widespread acceptance and use of the first (1978), second (1982), third (1990), fourth (1997), and fifth (2002) editions, and 2) the proposed changes or additions that have appeared in print since 2002. The common names in this list are standardized, and, in general, merely repeat those that appeared in the fifth (2002) edition. We have made a few minor changes to some common names, adjustments either dictated by changes in their scientific names, to correct overlooked inconsistencies in the previous editions, or to bring a name into compliance with what we perceive is now common usage in most major publications on amphibians, turtles, reptiles, and crocodilians. The common names that appear in this edition are stable, and have been used extensively in state, regional, and national field guides on the North American herpetofauna that have been published since 1956, thus proving the utility and need for the standard common names contained herein. An important new feature of this list is the ability of its users to now track and evaluate all proposed taxonomic changes on the internet. As it did with the fourth and fifth editions, The Center for North American Herpetol- ogy, which has the largest and most comprehensive academic herpetological web site on the internet worldwide, will maintain this sixth edition online and will update it daily as changes are proposed in print. Users of this list can access the online version at http://www.cnah.org Over the past twenty years, evidence has shown that traditional recognition of the Class Reptilia is not consistent with evolutionary history. However, due to historical inertia, the herpetological community continues to be reluctant to incorporate any of these changes. We have adopted a classification based on the phylogenetic hypothesis for the Phylum Chordata displayed on the CNAH web site (Collins and Taggart, 1998–2009 et seq.), an arrangement rigorously supported by current scientific evidence using a traditional hierachy. The Class Reptilia has been traditionally composed of Order Chelonia (the turtles), Order Crocodylia (the crocodilians), Order Squamata (the lizards, snakes, and amphisbaenids), and Order Rhynchocephalia (the tuataras). The discovery that birds (Class Aves) are the closest modern relative to the 2 THe CeNTeR fOR North AmeRiCAN HeRPetolOgy crocodilians renders the former Class Reptilia as an unnatural group. in order to reconcile taxonomy with the evolutionary history revealed by molecular evidence, we have adopted the classification for North America as shown on the CNAH web site until further data suggest otherwise, as follows: Class Chelonia (turtles), Class eusuchia (crocodilians), Class Reptilia (amphis- baenians, lizards, snakes, and tuataras). Due to the arbitrary nature in which higher taxa may be delineated, we have tried to use a classification in which the maximum explanatory power is retained. We continue to urge all persons to use these standardized names—in writing, on zoo and museum exhibit labels, in proposed and enacted leg- islation, in public lectures, in media releases, and in any other manner that will stabilize, and thereby clarify, their use by the academic herpetological community and the general public. We continue to recommend that the first letter of each word in these standardized common names be capitalized, as they appear in this list. This sixth edition has been styled after the previous five editions. A com- plete and handy reference to original descriptions of most of the taxa in this list is available in Beltz (1995). Readers are also referred to the technical checklists of specific scientific names of all amphibians by frost (1985), all crocodilians and turtles by King and Burke (1989), and many (but not all) families of snakes by mcDiarmid, Campbell and Touré (1999). Since this checklist covers only the United States and Canada, readers may wish to consult frank and Ramus (1995) for common names for the rest of the world. major changes in this edition are the inclusion of complete traditional hierar- chies (with author attribution and date of first usage) as well as the adoption of higher level taxonomic names based on frost et al. (2006) for amphibian genera and families, frost and etheridge (1989) and frost et al. (2001) for lizard families, Collins (2006) for snake families, and Collins and Taggart (2008a, 2008b) for selected snake genera. Within the taxonomy presented here, Classes, Orders, families, genera, and species are in alphabetical order. The presence of a scientific name on this list indicates that it has been properly
Recommended publications
  • (2007) a Photographic Field Guide to the Reptiles and Amphibians Of
    A Photographic Field Guide to the Reptiles and Amphibians of Dominica, West Indies Kristen Alexander Texas A&M University Dominica Study Abroad 2007 Dr. James Woolley Dr. Robert Wharton Abstract: A photographic reference is provided to the 21 reptiles and 4 amphibians reported from the island of Dominica. Descriptions and distribution data are provided for each species observed during this study. For those species that were not captured, a brief description compiled from various sources is included. Introduction: The island of Dominica is located in the Lesser Antilles and is one of the largest Eastern Caribbean islands at 45 km long and 16 km at its widest point (Malhotra and Thorpe, 1999). It is very mountainous which results in extremely varied distribution of habitats on the island ranging from elfin forest in the highest elevations, to rainforest in the mountains, to dry forest near the coast. The greatest density of reptiles is known to occur in these dry coastal areas (Evans and James, 1997). Dominica is home to 4 amphibian species and 21 (previously 20) reptile species. Five of these are endemic to the Lesser Antilles and 4 are endemic to the island of Dominica itself (Evans and James, 1997). The addition of Anolis cristatellus to species lists of Dominica has made many guides and species lists outdated. Evans and James (1997) provides a brief description of many of the species and their habitats, but this booklet is inadequate for easy, accurate identification. Previous student projects have documented the reptiles and amphibians of Dominica (Quick, 2001), but there is no good source for students to refer to for identification of these species.
    [Show full text]
  • REPTILIA: SQUAMATA: TEIIDAE AMEIVA CORVINA Ameiva Corvina
    REPTILIA: SQUAMATA: TEIIDAE AMEIVACORVINA Catalogue of American Amphibians and Reptiles. Shew, J.J., E.J. Censky, and R. Powell. 2002. Ameiva corvina. Ameiva corvina Cope Sombrero Island Ameiva Ameiva corvina Cope 186 1:3 12. Type locality, "island of Som- brero." Lectotype (designated by Censky and Paulson 1992), Academy of Natural Sciences of Philadelphia (ANSP) 9 116, an adult male, collected by J.B. Hansen, date of collection not known (examined by EJC). See Remarks. CONTENT. No subspecies are recognized. DEFINITION. Ameiva corvina is a moderately sized mem- ber of the genus Ameiva (maximum SVL of males = 133 rnm, of females = 87 mm;Censky and Paulson 1992). Granular scales around the body number 139-156 (r = 147.7 f 2.4, N = 16), ventral scales 32-37 (7 = 34.1 + 0.3, N = 16), fourth toe subdigital lamellae 34-41 (F = 38.1 + 0.5, N = IS), fifteenth caudal verticil 29-38 (r = 33.3 0.6, N = 17), and femoral I I I + MAP. The arrow indicates Sombrero Island, the type locality and en- pores (both legs) 5M3(r = 57.3 0.8, N = 16)(Censky and + tire range of An~eivacorvina. Paulson 1992). See Remarks. Dorsal and lateral coloration is very dark brown to slate black and usually patternless (one individual, MCZ 6141, has a trace of a pattern with faded spots on the posterior third of the dor- sum and some balck blotches on the side of the neck). Brown color often is more distinct on the heads of males. The venter is very dark blue-gray.
    [Show full text]
  • Predation on Ameiva Ameiva (Squamata: Teiidae) by Ardea Alba (Pelecaniformes: Ardeidae) in the Southwestern Brazilian Amazon
    Herpetology Notes, volume 14: 1073-1075 (2021) (published online on 10 August 2021) Predation on Ameiva ameiva (Squamata: Teiidae) by Ardea alba (Pelecaniformes: Ardeidae) in the southwestern Brazilian Amazon Raul A. Pommer-Barbosa1,*, Alisson M. Albino2, Jessica F.T. Reis3, and Saara N. Fialho4 Lizards and frogs are eaten by a wide range of wetlands, being found mainly in lakes, wetlands, predators and are a food source for many bird species flooded areas, rivers, dams, mangroves, swamps, in neotropical forests (Poulin et al., 2001). However, and the shallow waters of salt lakes. It is a species predation events are poorly observed in nature and of diurnal feeding habits, but its activity peak occurs hardly documented (e.g., Malkmus, 2000; Aguiar and either at dawn or dusk. This characteristic changes Di-Bernardo, 2004; Silva et al., 2021). Such records in coastal environments, where its feeding habit is are certainly very rare for the teiid lizard Ameiva linked to the tides (McCrimmon et al., 2020). Its diet ameiva (Linnaeus, 1758) (Maffei et al., 2007). is varied and may include amphibians, snakes, insects, Found in most parts of Brazil, A. ameiva is commonly fish, aquatic larvae, mollusks, small crustaceans, small known as Amazon Racerunner or Giant Ameiva, and birds, small mammals, and lizards (Martínez-Vilalta, it has one of the widest geographical distributions 1992; Miranda and Collazo, 1997; Figueroa and among neotropical lizards. It occurs in open areas all Corales Stappung, 2003; Kushlan and Hancock 2005). over South America, the Galapagos Islands (Vanzolini We here report a predation event on the Ameiva ameiva et al., 1980), Panama, and several Caribbean islands by Ardea alba in the southwestern Brazilian Amazon.
    [Show full text]
  • ADOT Herbicide Treatment Program on Bureau of Land Management Lands in Arizona
    October 2015 BLM DOI-BLM-AZ-0000-2013-0001-EA ADOT Herbicide Treatment Program on Bureau of Land Management Lands in Arizona Final Environmental Assessment Bureau of Land Management Environmental Assessment and Section 4(f) Evaluation ADOT Herbicide Treatment Program on Bureau of Land Management Lands in Arizona DOI-BLM-AZ-0000-2013-0001-EA Bureau of Land Management Arizona State Office One North Central Avenue, Suite 800 Phoenix, Arizona 85004-4427 October 2015 TABLE OF CONTENTS Table of Contents ............................................................................................................................. i List of Tables ................................................................................................................................... iii List of Figures .................................................................................................................................. iii Acronym List ................................................................................................................................... iv Section 1 – Proposed Action, Purpose and Need, and Background Information ........................... 1 1.1 Introduction...................................................................................................................... 1 1.2 Proposed Action Overview ............................................................................................... 3 1.3 Purpose and Need for Action ..........................................................................................
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • Site-Specific Environmental Assessment
    Environmental Assessment Rangeland Grasshopper and Mormon Cricket Suppression Program ARIZONA EA Number: AZ-20-01 Site-Specific Graham and Gila County portion within the San Carlos Apache Reservation; Mohave County Hualapai Reservation; Cochise County portion of Coronado National Forest – Winchester Mountains Prepared by: Animal and Plant Health Inspection Service 3640 East Wier Ave. Phoenix, Arizona 85040 May 6, 2020 1 Table of Contents I. Need for Proposed Action ...................................................................................................... 4 A. Purpose and Need Statement .............................................................................................. 4 B. Background Discussion ...................................................................................................... 5 C. About This Process ............................................................................................................. 7 II. Alternatives ............................................................................................................................ 7 A. No Action Alternative ......................................................................................................... 8 B. Insecticide Applications at Conventional Rates or Reduced Agent Area Treatments with Adaptive Management Strategy (Preferred Alternative) .......................................................................... 8 C. Experimental Treatments Alternative ..............................................................................
    [Show full text]
  • Biological Conservation 228 (2018) 310–318
    Biological Conservation 228 (2018) 310–318 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Multi-scale effects of land cover and urbanization on the habitat suitability of an endangered toad T ⁎ Michael L. Tregliaa, , Adam C. Landonb,c,1, Robert N. Fisherd, Gerard Kyleb, Lee A. Fitzgeralda a Department of Wildlife and Fisheries Sciences, Biodiversity Research and Teaching Collections, Applied Biodiversity Science Program, Texas A&M University, College Station, TX 77843-2258, USA b Human Dimensions of Natural Resources Lab, Department of Recreation, Parks, and Tourism Sciences, Texas A&M University, College Station, TX 77843-2261, USA c Water Management and Hydrological Science Program, Texas A&M University, College Station, TX 77843-3408, USA d U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, San Diego, CA, USA ARTICLE INFO ABSTRACT Keywords: Habitat degradation, entwined with land cover change, is a major driver of biodiversity loss. Effects of land cover Watersheds change on species can be direct (when habitat is converted to alternative land cover types) or indirect (when Structural equation model land outside of the species habitat is altered). Hydrologic and ecological connections between terrestrial and California aquatic systems are well understood, exemplifying how spatially disparate land cover conditions may influence Arroyo toad aquatic habitats, but are rarely examined. We sought to quantify relative effects of land cover at two different but Anaxyrus californicus interacting scales on habitat suitability for the endangered arroyo toad (Anaxyrus californicus). Based on an Anthropogenic development ff Riparian areas existing distribution model for the arroyo toad and available land cover data, we estimated e ects of land cover along streams and within entire watersheds on habitat suitability using structural equation modeling.
    [Show full text]
  • Arroyo Toad (Anaxyrus Californicus) Life History, Population Status, Population
    Arroyo Toad (Anaxyrus californicus) Life History, Population Status, Population Threats, and Habitat Assessment of Conditions at Fort Hunter Liggett, Monterey County, California A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology by Jacquelyn Petrasich Hancock December 2009 © 2009 Jacquelyn Petrasich Hancock ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Arroyo Toad (Anaxyrus californicus) Life History, Population Status, Population Threats, and Habitat Assessment of Conditions at Fort Hunter Liggett, Monterey County, California AUTHOR: Jacquelyn Petrasich Hancock DATE SUBMITTED: December 2009 COMMITTEE CHAIR: David Pilliod, PhD COMMITTEE MEMBER: Emily Taylor, PhD COMMITTEE MEMBER: Scott Steinmaus, PhD iii Abstract Arroyo Toad (Anaxyrus californicus) Life History, Population Status, Population Threats, and Habitat Assessment of Conditions at Fort Hunter Liggett, Monterey County, California Jacquelyn Petrasich Hancock The arroyo toad (Anaxyrus californicus) is a federally endangered species found on Fort Hunter Liggett, Monterey County, California. The species was discovered in 1996 and was determined to occupy 26.7 km of the San Antonio River from approximately 2.4 km northwest of the San Antonio Mission de Padua, to the river delta above the San Antonio Reservoir. The construction of the San Antonio Reservoir dam in 1963 isolated this northern population of arroyo toads. Through time, the Fort Hunter Liggett landscape has changed drastically. The land was heavily grazed by cattle until 1991, which considerably reduced vegetation in riparian areas. Military training following acquisition of the land in 1940 far exceeded current allowable training. Fire was used extensively to reduce unfavorable vegetation, and as a result, extreme tree loss occurred through the ranges.
    [Show full text]
  • (Tantilla Oolitica) in Miami-Dade and Monroe Counties, Florida
    Assessment of the Status and Distribution of the Endemic Rim Rock Crowned Snake (Tantilla oolitica) in Miami-Dade and Monroe Counties, Florida Final Report Grant Agreement #401817G006 Kirsten N. Hines and Keith A. Bradley July 10, 2009 Submitted by: The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, FL 33170 George D. Gann, Executive Director Submitted to: Paula Halupa Fish and Wildlife Biologist U.S. Fish and Wildlife Service 1339 20th Street Vero Beach, FL 32960 1 Project Background: The rim rock crowned snake (Tantilla oolitica) is one of three species of small, burrowing snakes within the genus Tantilla found in Florida. Of the more than 40 species of this genus extending from the southeastern United States down to northern Argentina in South America, T. oolitica has the most limited distribution (Wilson 1982, Scott 2004). Confined to the Miami Rock Ridge in southeastern Miami-Dade County and parts of the Florida Keys in Monroe County, this species has been greatly affected by the rapid urbanization of this area. By 1975 it had already made the Florida State list of threatened species and it is currently considered a candidate for the Federal Endangered Species List. Traditionally, T. oolitica habitat included rockland hammocks and pine rocklands. Less than 2% of the pine rocklands on the Miami Rock Ridge currently remain (Snyder et. al 1990, USFWS 1999) and rockland hammocks both in Miami-Dade County and throughout the Florida Keys have been reduced to less than half their original extent and continue to face threat of development (Enge et. al 1997, USFWS 1999).
    [Show full text]
  • 02186714 Colombia Finalrepo
    2 TABLE OF CONTENTS Project partners & Collaborators ...................................................................................................................................... 3 SECTION 1 ....................................................................................................................................................................... 4 Summary ............................................................................................................................................................................... 4 Introduction ......................................................................................................................................................................... 4 Project members ................................................................................................................................................................. 6 SECTION 2 .....................................................................................................................................................................10 Aim and objectives ......................................................................................................................................................10 Changes to original project plan ...............................................................................................................................10 Methodology ................................................................................................................................................................11
    [Show full text]
  • Trade in Live Reptiles, Its Impact on Wild Populations, and the Role of the European Market
    BIOC-06813; No of Pages 17 Biological Conservation xxx (2016) xxx–xxx Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/bioc Review Trade in live reptiles, its impact on wild populations, and the role of the European market Mark Auliya a,⁎,SandraAltherrb, Daniel Ariano-Sanchez c, Ernst H. Baard d,CarlBrownd,RafeM.Browne, Juan-Carlos Cantu f,GabrieleGentileg, Paul Gildenhuys d, Evert Henningheim h, Jürgen Hintzmann i, Kahoru Kanari j, Milivoje Krvavac k, Marieke Lettink l, Jörg Lippert m, Luca Luiselli n,o, Göran Nilson p, Truong Quang Nguyen q, Vincent Nijman r, James F. Parham s, Stesha A. Pasachnik t,MiguelPedronou, Anna Rauhaus v,DannyRuedaCórdovaw, Maria-Elena Sanchez x,UlrichScheppy, Mona van Schingen z,v, Norbert Schneeweiss aa, Gabriel H. Segniagbeto ab, Ruchira Somaweera ac, Emerson Y. Sy ad,OguzTürkozanae, Sabine Vinke af, Thomas Vinke af,RajuVyasag, Stuart Williamson ah,1,ThomasZieglerai,aj a Department Conservation Biology, Helmholtz Centre for Environmental Conservation (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany b Pro Wildlife, Kidlerstrasse 2, 81371 Munich, Germany c Departamento de Biología, Universidad del Valle de, Guatemala d Western Cape Nature Conservation Board, South Africa e Department of Ecology and Evolutionary Biology,University of Kansas Biodiversity Institute, 1345 Jayhawk Blvd, Lawrence, KS 66045, USA f Bosques de Cerezos 112, C.P. 11700 México D.F., Mexico g Dipartimento di Biologia, Universitá Tor Vergata, Roma, Italy h Amsterdam, The Netherlands
    [Show full text]