When Does Gene Flow Stop? a Mechanistic Approach to the Formation of Phylogeographic Breaks in Nature

Total Page:16

File Type:pdf, Size:1020Kb

When Does Gene Flow Stop? a Mechanistic Approach to the Formation of Phylogeographic Breaks in Nature When Does Gene Flow Stop? A Mechanistic Approach to the Formation of Phylogeographic Breaks in Nature by Iris Holmes A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology in the University of Michigan 2020 Doctoral Committee: Assistant Professor Alison Davis Rabosky, Chair Research Professor Liliana Cortés Ortiz Professor Patrick Schloss Associate Professor Stephen Smith Iris A. Holmes [email protected] ORCID iD: 0000-0001-6150-6150 © Iris A. Holmes 2020 Dedication I dedicate this thesis to Michael Grundler, who is always there. ii Acknowledgements The research in this dissertation was supported by funding from the University of Michigan, including the Department of Ecology and Evolutionary Biology, the Museum of Zoology, and the Rackham Graduate School. It was also supported by grants from the Bureau of Land Management, and the STEPS Institute for Innovation in Environmental Research at the University of California. The research in my dissertation was greatly facilitated by the National Science Foundation Graduate Research Fellowship, the Rackham Predoctoral Fellowship, and the Rackham Graduate School Anna Olcott Smith Women in Science Award. I would like to thank my adviser, Alison Davis Rabosky, for her care and attention in developing both my strengths and weaknesses as a scientist. I would also like to thank the rest of my committee, Patrick Schloss, Stephen Smith, and Liliana Cortez Ortiz, for their help and support in completing my dissertation. In addition, I have had the privilege to work with excellent coauthors on the manuscripts in this dissertation, including Maggie Grundler, William Mautz, Ivan Monagan Jr, and Mike Westphal. I would like to thank the communities in the University of Michigan Museum of Zoology, and the UMMZ Department of Herpetology and Genomic Diversity Laboratory in particular, as well as the University of Michigan Department of Ecology and Evolutionary Biology. I am particularly indebted to the Davis Rabosky and Rabosky labs for their help and support of all kinds. iii Table of Contents Dedication .....................................................................................................................................................ii Acknowledgements .................................................................................................................................... iii List of Tables ................................................................................................................................................ x List of Figures ............................................................................................................................................. xi Abstract ......................................................................................................................................................xii Chapter 1 Introduction ............................................................................................................................... 1 Chapter 2 Historical Environment is Reflected in Modern Population Genetics and Biogeography of an Island Endemic Lizard (Xantusia riversiana reticulata) ................................................................. 6 2.1 Abstract .............................................................................................................................................. 6 2.2 Introduction ....................................................................................................................................... 7 2.2.1 San Clemente Island biogeography.............................................................................................. 8 2.2.2 Xantusia riversiana and its phylogenetic relationships ............................................................... 8 2.2.3 Human impacts on San Clemente Island ................................................................................... 10 2.3 Methods ............................................................................................................................................ 10 2.3.1 Ethics Statement ......................................................................................................................... 10 2.3.2 Tissue collection and site descriptions ....................................................................................... 11 iv 2.3.3 Primer design and locus amplification ....................................................................................... 12 2.3.4 Next generation sequencing ....................................................................................................... 13 2.3.5 Locus linkage and disequilibrium .............................................................................................. 13 2.3.6 Genetic diversity, gene flow, and population structure ............................................................. 14 2.3.7 Effective population size ............................................................................................................ 15 2.3.8 Population bottlenecks ............................................................................................................... 16 2.3.9 Spatial genetic structure ............................................................................................................. 16 2.4 Results............................................................................................................................................... 18 2.4.1 Locus behavior, genetic diversity, and population structure ..................................................... 18 2.4.2 Effective population size and genetic bottlenecks ..................................................................... 19 2.4.3 Spatial genetic structure ............................................................................................................. 20 2.5 Discussion ......................................................................................................................................... 21 2.5.1 Genetic diversity of Xantusia riversiana ................................................................................... 21 2.5.2 Effects of previous conservation action: goat removal .............................................................. 23 2.5.3 Future conservation focus .......................................................................................................... 23 2.6 Data Archiving .............................................................................................................................. 24 2.7 Acknowledgments ......................................................................................................................... 24 2.8 Funding ......................................................................................................................................... 25 Chapter 3 Parsing Variance by Marker Type: Testing Biogeographic Hypotheses and Differential Contribution of Historical Processes to Population Structure in a Desert Lizard .............................. 43 3.1 Abstract ............................................................................................................................................ 43 3.2 Introduction ..................................................................................................................................... 44 v 3.2.1 Biogeographic hypotheses ......................................................................................................... 46 3.2.2 Predictions of marker variance .................................................................................................. 47 3.3 Methods ............................................................................................................................................ 49 3.3.1 Field collection and tissue acquisition ....................................................................................... 49 3.3.2 Habitat classifications ................................................................................................................ 49 3.3.3 DNA extraction and Microsatellite Genotyping ........................................................................ 50 3.3.4 Next-Generation Sequencing and Data Processing ................................................................... 50 3.3.5 Locus diversity and characteristics ............................................................................................ 51 3.3.6 Phylogeography ......................................................................................................................... 51 3.3.7 Historical movement corridors................................................................................................... 52 3.4 Results............................................................................................................................................... 54 3.4.1 Locus characteristics, diversity, and private alleles ................................................................... 54 3.4.2 Phylogeography ......................................................................................................................... 54 3.4.3 Historical movement corridors................................................................................................... 55 3.4.4 Locus comparison .....................................................................................................................
Recommended publications
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Zootaxa, a New Species of Night-Lizard of the Genus Lepidophyma
    Zootaxa 1750: 59–67 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A new species of night-lizard of the genus Lepidophyma (Squamata: Xantusiidae) from the Cuicatlán Valley, Oaxaca, México LUIS CANSECO-MÁRQUEZ1, GUADALUPE GUTIÉRREZ-MAYEN2 & ANDRÉS ALBERTO MENDOZA-HERNÁNDEZ1 1Departamento de Biología Evolutiva, Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-399, C. P. 04510, México, D. F., México 2Escuela de Biología, Laboratorio de Herpetología, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, Méx- ico Abstract A new species of Lepidophyma from the Biosphere Reserve area of Tehuacan-Cuicatlan, Oaxaca, Mexico, is described. This new species, Lepidophyma cuicateca sp. nov., is known from two areas in the Cuicatlan Valley. Lepidophyma cuicateca sp. nov. is a member of the Lepidophyma gaigeae species Group and is characterized by its small body size, small size of tubercular body scales, poorly differentiated caudal whorls and interwhorls, and relatively large dorsal, ven- tral and gular scales. It lives in shady places, below rocks along the Apoala River, and is commonly found in plantain, sapodilla, cherimoya, mango and coffee plantations, as well as tropical deciduous forest. The description of L. cuicateca sp. nov. increases the number of species in the L. gaigeae Group to five. Key words: Squamata, Lepidophyma gaigeae Group, Lepidophyma cuicateca sp. nov., new species, Xantusiidae, Mex- ico, Oaxaca Resumen Se describe una nueva especie de Lepidophyma para la parte oaxaqueña de la reserva de la biosfera de Tehuacán- Cuicatlán. Esta especie es conocida para dos áreas de la Cañada de Cuicatlán.
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • 0189 Xantusia Henshawi.Pdf (296.1Kb)
    189.1 REPTILIA: SQUAMATA: SAURIA: XANTUSIIDAE XANTUSIA HENSHA WI Catalogue of Am.erican Am.phihians and Reptiles. sequently (Van Denburgh, 1922) placed Z ablepsis henshavii in the synonymy ofX. henshawi Stejneger. Cope (1895b) described, LEE, JULIANC. 1976. Xantusia henshawi. but failed to name a supposedly new species of Xantusia. In a later publication (Cope, 1895c) he corrected the oversight, and named Xantusia picta. Van Denburgh (1916) synonymized Xantusia henshawi Stejneger picta with X. henshawi, and traced the complicated history of Granite night lizard the type-specimen . Xantusia henshawi Stejneger, 1893:467. Type-locality, "Witch • ETYMOLOGY.The specific epithet honors H. W. Henshaw. Creek, San Diego County, California." Holotype, U. S. Nat. According to Webb (1970), "The name bolsonae refers to the Mus. 20339, collected in May 1893 by H. W. Henshaw (Holo• geographic position of this race in a southern outlier of the type not seen by author). Bolson de Mapimi." Zablepsis henshavii: Cope, 1895a:758. See NOMENCLATURAL HISTORY. 1. Xantusia henshawi henshawi Stejnege •. Xantusia picta Cope, 1895c:859. Type-locality, "Tejon Pass, California," probably in error, corrected by Van Denburgh Xantusia henshawi Stejneger, 1893:467. See species account. Xantusia henshawi henshawi: Webb, 1970:2. First use of tri- (1916:14) to Poway, San Diego County, California. Holotype, nomial. Acad. Natur. Sci. Philadelphia 12881 (Malnate, 1971), prob• ably collected by Dr. Frank E. Blaisdell (see NOMENCLATURAL • DEFINITIONANDDIAGNOSIS. The mean snout-vent length HISTORY). in males is 56 mm., and in females 62 mm. Distinct post• • CONTENT. Two subspecies are recognized: henshawi and orbital stripes are usually absent, and the dorsal color pattern bolsonae.
    [Show full text]
  • Habitat Selection of the Desert Night Lizard (Xantusia Vigilis) on Mojave Yucca (Yucca Schidigera) in the Mojave Desert, California
    Habitat selection of the desert night lizard (Xantusia vigilis) on Mojave yucca (Yucca schidigera) in the Mojave Desert, California Kirsten Boylan1, Robert Degen2, Carly Sanchez3, Krista Schmidt4, Chantal Sengsourinho5 University of California, San Diego1, University of California, Merced2, University of California, Santa Cruz3, University of California, Davis4 , University of California, San Diego5 ABSTRACT The Mojave Desert is a massive natural ecosystem that acts as a biodiversity hotspot for hundreds of different species. However, there has been little research into many of the organisms that comprise these ecosystems, one being the desert night lizard (Xantusia vigilis). Our study examined the relationship between the common X. vigilis and the Mojave yucca (Yucca schidigera). We investigated whether X. vigilis exhibits habitat preference for fallen Y. schidigera log microhabitats and what factors make certain log microhabitats more suitable for X. vigilis inhabitation. We found that X. vigilis preferred Y. schidigera logs that were larger in circumference and showed no preference for dead or live clonal stands of Y. schidigera. When invertebrates were present, X. vigilis was approximately 50% more likely to also be present. These results suggest that X. vigilis have preferences for different types of Y. schidigera logs and logs where invertebrates are present. These findings are important as they help in understanding one of the Mojave Desert’s most abundant reptile species and the ecosystems of the Mojave Desert as a whole. INTRODUCTION such as the Mojave Desert in California. Habitat selection is an important The Mojave Desert has extreme factor in the shaping of an ecosystem. temperature fluctuations, ranging from Where an animal chooses to live and below freezing to over 134.6 degrees forage can affect distributions of plants, Fahrenheit (Schoenherr 2017).
    [Show full text]
  • A Pipeline for Identifying Metagenomic Sequences in Radseq Data
    Natural history bycatch: a pipeline for identifying metagenomic sequences in RADseq data Iris Holmes and Alison R. Davis Rabosky Department of Ecology and Evolutionary Biology, University of Michigan Museum of Zoology, University of Michigan, Ann Arbor, MI, USA ABSTRACT Background: Reduced representation genomic datasets are increasingly becoming available from a variety of organisms. These datasets do not target specific genes, and so may contain sequences from parasites and other organisms present in the target tissue sample. In this paper, we demonstrate that (1) RADseq datasets can be used for exploratory analysis of tissue-specific metagenomes, and (2) tissue collections house complete metagenomic communities, which can be investigated and quantified by a variety of techniques. Methods: We present an exploratory method for mining metagenomic “bycatch” sequences from a range of host tissue types. We use a combination of the pyRAD assembly pipeline, NCBI’s blastn software, and custom R scripts to isolate metagenomic sequences from RADseq type datasets. Results: When we focus on sequences that align with existing references in NCBI’s GenBank, we find that between three and five percent of identifiable double-digest restriction site associated DNA (ddRAD) sequences from host tissue samples are from phyla to contain known blood parasites. In addition to tissue samples, we examine ddRAD sequences from metagenomic DNA extracted snake and lizard hind-gut samples. We find that the sequences recovered from these samples match with expected bacterial
    [Show full text]
  • Living World 1995-1996.Pdf
    Journal of The Trinidad and Tobago Field Naturalists' Club 1995-1996 Natura Maxime Miranda in Minimis Published July 1996 UVING WORLD is a published biennially by the Trinidad and Tobago Field Naturalists' Club. All rights reserved. Typesetting by Detta Buch, design and mechanical art by Ichris Industries, 63 School St, Carenage, Republic of Trinidad & Tobago. living World Journal of the Trinidad &. Tobago Field Naturalists' Club 1995-1996 EC:litorial Contents There were eight founders of the Freidric William Urich rinldad Field Naturalists' Club in Fr.Anthony de Verteuil C.S.Sp. ...................................3 1891, and biographies of five of the Forest Decline in Trinidad & Tobago I~ ere published in the centenary issu Paul L.Comeau .......................................6 of 1991-1992. This issue includes on The Revegetation of the McClean Monument ~f F.W. Urich, the last of the well Victor Quesnel, T.Frankie Farrell, Anne Hilton, John Hilton and Luisa Zuniaga •.•9 iknown founders. The remaining IW Back to Landscaping... and in style! left no published material and facts Dennis Nardin .......................................13 rabout their lives are so scant that more Guanapo Cave bea.ch will have to be done before we Joannah P.E.C.Darlington .......•.........................15 publish anything worthwhile. Fr d Some Recent Reptilian Introductions to Trinidad trteuil's account of the life of Uricli Hans E.A. Boos .................•................... .17 ~ as published in his book "The Noteworthy Bird Records for Trinidad & Tobago, 1993-1994 nnans in Trinidad" (1994) jUld he floyd E. Hayes .............•.........................20 ! ciously gave us permission t Distributional Ecology of Selected Ebstract what we wanted from lhis pnbJ Plants and Animals on Trinidad!s 1ication.
    [Show full text]
  • Competing Reproductive and Physiological Investments in an All‑Female Lizard, the Colorado Checkered Whiptail
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2020 Competing reproductive and physiological investments in an all‑female lizard, the Colorado checkered whiptail Lise M. Aubry Colorado State University - Fort Collins, [email protected] Spencer B. Hudson Utah State University, [email protected] Bryan M. Kluever NWRC, Gainesville, [email protected] Alison C. Webb Utah State University Susannah S. French Utah State University, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, and the Zoology Commons Aubry, Lise M.; Hudson, Spencer B.; Kluever, Bryan M.; Webb, Alison C.; and French, Susannah S., "Competing reproductive and physiological investments in an all‑female lizard, the Colorado checkered whiptail" (2020). USDA National Wildlife Research Center - Staff Publications. 2375. https://digitalcommons.unl.edu/icwdm_usdanwrc/2375 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Evolutionary Ecology (2020) 34:999–1016 https://doi.org/10.1007/s10682-020-10081-x ORIGINAL PAPER Competing reproductive and physiological investments in an all‑female lizard, the Colorado checkered whiptail Lise M.
    [Show full text]
  • Terrestrial Vertebrate Monitoring Channel Islands National Park 1993 Annual Report
    Terrestrial Vertebrate Monitoring Channel Islands National Park 1993 Annual Report Catherin A. Schwemm Channel Islands National Park 1901 Spinnaker Drive Ventura, CA 93001 January, 1995 Channel Islands National Park Technical Report CHIS - 1994 - 02 ABSTRACT Terrestrial vertebrate monitoring was begun at Channel Islands National Park during the spring of 1993. Previously developed monitoring protocols for island fox, island deer mice, pacific slender salamanders, and several species of lizard were implemented on San Miguel, Anacapa, and Santa Barbara islands. Estimates of population size and density are presented for two island fox grids and five deer mouse sampling grids. Results are presented for seven amphibian/reptile sampling transects, although data obtained were insufficient for population or density analysis. This being the first year of monitoring there was very little information from previous sampling available for comparison. Where past data exists or relevant studies have been completed, such information is compared with our data. Much time was spent this first year on transforming what was proposed in the written protocol into what would actually work in the field. Mostly as a result of trial and error, we have made changes to the protocol where needed. These are mainly changes in timing or location of sampling, generally not in sampling procedure. The nature of these modifications and grounds for their implementation are discussed. ii ACKNOWLEDGEMENTS The following people assisted with field work: Glen Conant, Tim Coonan, Heidi David, Beth Fulsom, Jack Gillooly, Tree Gottschalk, Marie Lindsay, Carmen Lombardo, Julie Pearson, Annie Swank, Sandy Winkler, Ron Walder, and Ian Williams. Gary Roemer graciously provided expert advice regarding island fox sampling techniques.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Sexual Size Dimorphism and Feeding Ecology of Eutropis Multifasciata (Reptilia: Squamata: Scincidae) in the Central Highlands of Vietnam
    Herpetological Conservation and Biology 9(2):322−333. Submitted: 8 March 2014; Accepted: 2 May 2014; Published: 12 October 2014. SEXUAL SIZE DIMORPHISM AND FEEDING ECOLOGY OF EUTROPIS MULTIFASCIATA (REPTILIA: SQUAMATA: SCINCIDAE) IN THE CENTRAL HIGHLANDS OF VIETNAM 1, 5 2 3 4 CHUNG D. NGO , BINH V. NGO , PHONG B. TRUONG , AND LOI D. DUONG 1Faculty of Biology, College of Education, Hue University, Hue, Thua Thien Hue 47000, Vietnam, 2Department of Life Sciences, National Cheng Kung University, Tainan, Tainan 70101, Taiwan, e-mail: [email protected] 3Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 55000, Vietnam 4College of Education, Hue University, Hue, Thua Thien Hue 47000, Vietnam 5Corresponding author, e-mail:[email protected] Abstract.—Little is known about many aspects of the ecology of the Common Sun Skink, Eutropis multifasciata (Kuhl, 1820), a terrestrial viviparous lizard found in the Central Highlands of Vietnam. We measured males and females to determine whether this species exhibits sexual size dimorphism and whether there was a correlation between feeding ecology and body size. We also examined spatiotemporal and sexual variations in dietary composition and prey diversity index. We used these data to examine whether the foraging pattern of these skinks corresponded to the pattern of a sit-and-wait predator or a widely foraging predator. The average snout-vent length (SVL) was significantly larger in adult males than in adult females. When SVL was taken into account as a covariate, head length and width and mouth width were larger in adult males than in adult females.
    [Show full text]
  • History of Squamate Lizard Dac
    History of Squamate Lizard Dactyloidae from the Eastern Caribbean, Origins of Anolis from Martinique, Zanndoli Matinik (Dactyloa roquet) Marcel Bourgade To cite this version: Marcel Bourgade. History of Squamate Lizard Dactyloidae from the Eastern Caribbean, Origins of Anolis from Martinique, Zanndoli Matinik (Dactyloa roquet). 2020. hal-02469738 HAL Id: hal-02469738 https://hal.archives-ouvertes.fr/hal-02469738 Submitted on 6 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Martinique, January 2020 History of Squamate Lizard Dactyloidae from the Eastern Caribbean Origins of Anolis from Martinique, Zanndoli Matinik (Dactyloa roquet) by Marcel BOURGADE 56 islet of Pointe Marin, 97227 Sainte-Anne, Martinique, Eastern Caribbean [email protected] 1 Summary – The Anolis of Martinique, Zanndoli (in Martinique), the species of reptile lizard Dactyloa roquet represents with the species of amphibian Hylode of Johnstonei, Eleutherodactylus johnstonei, the two species of herpetofauna endemic to the eastern Caribbean, the most widely widespread and present in large numbers throughout the territory of Martinique. The history of the Dactyloidae of the eastern Caribbean that we retrace is based on the most recent data publications, in terms of research in molecular systematics, crossed with the data of the geological history of this geographical region of the Eastern Caribbean.
    [Show full text]