Draft Section 21 Environmental Risk Assessment Guidance

Total Page:16

File Type:pdf, Size:1020Kb

Draft Section 21 Environmental Risk Assessment Guidance DRAFT SECTION 21 ENVIRONMENTAL RISK ASSESSMENT GUIDANCE FOR MARINE COASTAL ENVIRONMENTS IN HAWAII DRAFT - FEBRUARY 2018 DRAFT Contents 21.0 ECOLOGICAL RISK ASSESSMENT GUIDANCE FOR COASTAL MARINE ENVIRONMENTS IN HAWAII ................................................................................................................................... 1 21.1 FRAMEWORK FOR ECOLOGICAL RISK ASSESSMENTS .................................................................... 4 21.2 DETERMINE THE NEED FOR A SLERA ........................................................................................ 5 21.3 SCREENING LEVEL ECOLOGICAL RISK ASSESSMENT ...................................................................... 5 21.3.1 Preparing for a SLERA ...................................................................................................... 6 21.3.2 Components of a Marine Sediment SLERA .................................................................... 9 21.3.3 Step 1B: Screening Level Site Characterization Data..................................................... 10 21.3.3.1 Step 1b, Task 1. Describe Environmental Setting ...............................................10 21.3.3.2 Step 1b, Task 2. Compile Available Site-Specific and Reference Data on Chemicals and Endpoints .................................................................................................... 17 21.3.3.3 Table 21-Step 1b, Task 3. Select Assessment and Measurement Endpoints ...... 17 21.3.3.4 Step 1b, Task 4. Identify Complete Exposure Pathways and Potential Routes of Exposure ............................................................................................................ 25 21.3.3.5 Step 1b, Task 5. Develop the Screening Level Preliminary Conceptual Site Model 25 21.3.4 Step 2: Estimating Exposure and Effects ...................................................................... 36 21.3.4.1 Step 2, Task 1. Compile Screening levels ........................................................... 36 21.3.4.2 Step 2, Task 2. Calculating Contaminant Concentration(s) in Sediment and Water ................................................................................................................. 41 21.3.4.3 Step 2, Task 3. Estimating Daily Ingested Dose to Birds and Mammals ............. 41 21.3.4.4 Step 2, Task 4. Calculate Site-Specific Hazard Quotients ................................. 44 21.3.4.5 Step 2, Task 5. Decision Checkpoint .................................................................. 45 21.3.5 Step 3A: Refine Screening Level Default Assumptions ................................................ 45 21.3.5.1 Step 3a, Task 1. Conduct Background Screening .............................................. 45 21.3.5.2 Step 3a, Task 2. Evaluate Magnitude of Screening Level Exceedance and Frequency of Detection ..................................................................................... 46 21.3.5.3 Step 3a, Task 3. Refine Conservative Exposure Assumptions .......................... 46 21.3.5.4 Step 3a, Task 4. Obtain HEER Office Concurrence on Refinements ................. 47 21.3.5.5 Step 3a, Task 5. Recalculate HQs using Refined Exposure Assumptions .......... 47 21.3.5.6 Step 3a, Task 6. Develop SLERA Risk Characterization and Decision ............... 47 21.3.6 Uncertainty ..................................................................................................................... 47 21.4 ANTICIPATING AND ADDRESSING DATA GAPS ........................................................................... 48 21.5 SUMMARY OF DECISION LOGIC FOR ERAS ................................................................................ 50 21.6 BASELINE ECOLOGICAL RISK ASSESSMENT ............................................................................... 54 21.6.1 BERA Refined Problem Formulation ............................................................................. 55 21.6.1.1 Sediment Dynamics ........................................................................................... 55 21.6.1.2 Chemicals of Potential Ecological Concern........................................................ 56 21.6.1.3 Ecological Receptors (Assessment and Measurement Endpoints) ................... 56 21.6.1.4 Refined Conceptual Site Model ......................................................................... 56 21.6.2 BERA Study Design and Data Quality Objectives ......................................................... 57 DRAFT – February 2018 Page 21-i DRAFT 21.6.2.1 Laboratory Analyses .......................................................................................... 57 21.6.2.2 Sediment Sampling ........................................................................................... 58 21.6.2.3 Pore Water Sampling ........................................................................................ 60 21.6.2.4 Surface Water Sampling .................................................................................... 61 21.6.2.5 Biological Surveys .............................................................................................. 62 21.6.2.6 Field-Collected Tissue Sampling ........................................................................ 63 21.6.2.7 Toxicity Testing ................................................................................................. 66 21.6.2.8 Laboratory Bioaccumulation Testing ................................................................ 68 21.6.3 Data Analysis and Interpretation .................................................................................. 69 21.6.3.1 Field Notes ......................................................................................................... 69 21.6.3.2 Analytical Results .............................................................................................. 70 21.6.3.3 Toxicity and Bioaccumulation Tests .................................................................. 71 21.6.4 Risk Characterization ..................................................................................................... 72 21.7 REFERENCES ....................................................................................................................... 74 Figures Figure 21-1. Food Chain Models Can Support Development of Conceptual Site Model ........................ 27 Figure 21-2. A Simple Diagrammatic Conceptual Site Model for a Rocky Intertidal Habitat with Hardbottom (such as Ilio Point, Moloka‘i) ........................................................................... 30 Figure 21-3. Conceptual Site Model for a Rocky Intertidal Habitat with Hardbottom ........................... 31 Figure 21-4. Conceptual Site Model for a Soft-Bottom Bay/Harbor Habitat (such as Hanale‘i Bay, Kaua‘i, or Pearl Harbor, O‘ahu) ............................................................................................ 32 Figure 21-5. Conceptual Site Model Prepared for a BERA at Pearl Harbor ............................................. 33 Figure 21-6. Conceptual Site Model Focused on Exposure of a Single Receptor Group (Water Birds) to a Single COPEC (Arsenic) in Sediments and Surface Water at Waiākea Pond on Hawaiʿi Island ...................................................................................................................................... 34 Figure 21-7. Conceptual Site Model Focused on a Single Class of COPECs (Energetic Compounds Associated with Discarded Munitions) ................................................................................ 35 Figure 21-8. Interim Decision Logic for Sediment Investigations in Hawai‘i ........................................... 51 Figure 21-9 (continued). Interim Decision Logic for Sediment Investigations in Hawai‘i ...................... 52 Tables Table 21-1. SLERA Framework ..................................................................................................................... 6 Table 21-2. Components of a Marine Sediment SLERA ............................................................................. 9 DRAFT – February 2018 Page 21-ii DRAFT Table 21-3. Unique or Distinct Aquatic Habitat Types and Locations in Hawai‘i ..................................... 12 Table 21-4. Point Sources of Target COPECs in Hawai‘i ............................................................................ 15 Table 21-5. Assessment and Measurement Endpoints: Coastal Marine Sediments .............................. 19 Table 21-6. Elements of a Marine Sediment Ecological CSM................................................................... 26 Table 21-7. HDOH HEER Office Interim Sediment Quality Guidelines for Selected Chemicals .............. 38 Table 21-8. Selected Species Profiles ........................................................................................................ 43 Table 21-9. Data Gap Analysis ................................................................................................................... 49 Table 21-10. Questions Guiding Decision Logic for Contaminated Sediment Investigation .................. 50 Table 21-11. Required, Preferred, and Optional Data for Sediment ERAs ............................................... 53 Table 21-12. Typical Depths of Biotic Zone1 .............................................................................................. 59 Table 21-13. Typical Tissue Volumes Required for Selected Chemical Analysis ...................................... 64 Table 21-14. Example of Qualitative Field Notes .....................................................................................
Recommended publications
  • "Red Sea and Western Indian Ocean Biogeography"
    A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea Item Type Article Authors DiBattista, Joseph; Roberts, May B.; Bouwmeester, Jessica; Bowen, Brian W.; Coker, Darren James; Lozano-Cortés, Diego; Howard Choat, J.; Gaither, Michelle R.; Hobbs, Jean-Paul A.; Khalil, Maha T.; Kochzius, Marc; Myers, Robert F.; Paulay, Gustav; Robitzch Sierra, Vanessa S. N.; Saenz Agudelo, Pablo; Salas, Eva; Sinclair-Taylor, Tane; Toonen, Robert J.; Westneat, Mark W.; Williams, Suzanne T.; Berumen, Michael L. Citation A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea 2015:n/a Journal of Biogeography Eprint version Post-print DOI 10.1111/jbi.12649 Publisher Wiley Journal Journal of Biogeography Rights This is the peer reviewed version of the following article: DiBattista, J. D., Roberts, M. B., Bouwmeester, J., Bowen, B. W., Coker, D. J., Lozano-Cortés, D. F., Howard Choat, J., Gaither, M. R., Hobbs, J.-P. A., Khalil, M. T., Kochzius, M., Myers, R. F., Paulay, G., Robitzch, V. S. N., Saenz-Agudelo, P., Salas, E., Sinclair-Taylor, T. H., Toonen, R. J., Westneat, M. W., Williams, S. T. and Berumen, M. L. (2015), A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. Journal of Biogeography., which has been published in final form at http:// doi.wiley.com/10.1111/jbi.12649. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving. Download date 23/09/2021 15:38:13 Link to Item http://hdl.handle.net/10754/583300 1 Special Paper 2 For the virtual issue, "Red Sea and Western Indian Ocean Biogeography" 3 LRH: J.
    [Show full text]
  • Polychaetes Associated with a Tropical Ocean Outfall: Synthesis of a Biomonitoring Program Off O'ahu, Hawai'f
    Polychaetes Associated with a Tropical Ocean Outfall: Synthesis ofa Biomonitoring Program off O'ahu, Hawai'F J. H. Bailey-Brock,2,3,4,5 B. Paavo,3,4 B. M. Barrett,3,4 and J. Dreyer3,4 Abstract: A comparison of benthic polychaete communities off the Sand Island Wastewater Outfall was undertaken to recognize organic enrichment indicator species for Hawaiian waters. Primary-treatment sewage is discharged off the south shore of O'ahu at 70 m depth. A historical data set spanning 9 yr for seven sites at 70 m and two recent studies at 20, 50, and 100 m depths were analyzed. Geochemical data did not support the assumption that the outfall is an im­ portant source of organic enrichment in nutrient-poor sandy sediments within oligotrophic tropical waters. Five polychaete species, however, appeared partic­ ularly sensitive, positively or negatively, to environmental conditions near the outfall. Neanthes arenaceodentata (Nereididae) and Ophryotrocha adherens (Dor­ villeidae) have been dominant at sites within the outfall's zone of initial dilution (ZID). Since 1993, N arenaceodentata has virtually disappeared, and 0. adherens concurrently became abundant and continued to flourish at ZID sites. Well­ known indicators within the Capitella capitata complex (Capitellidae) were pres­ ent at ZID and control (far field) sites though their ZID abundance was greater. Two sabellids, Euchone sp. Band Augeneriella dubia were inversely distributed, the smaller Euchone sp. B at far field sites and larger A. dubia within ZID sta­ tions. The former was most likely restricted to a greater proportion offine sed­ iment particles at two far field sites.
    [Show full text]
  • Ecotoxicology of Estuarine Amphipod Paracorophium Excavatum
    E icolo fEstua ·ne Amphipod Paracorophium excavatum A thesis Submitted in partial fulfilment the requirements for Degree of Master of Science in Environmental Science at The University of Canterbury by Carol Wong Hee Ting University of Canterbury 1999 ABSTRACT The estuarine tube dwelling amphipod Paracorophium excavatum was investigated for its suitability as a bio-indicator and bio-monitor. Distribution patterns of P. excavatum were determined at 13 sites in the Canterbury region that differed in particle size distribution ranging from sandy to muddy sediment, with overall10w organic content. Low tide salinity ranged from 5 to 33 0/00 between sites and sediment moisture content ranged between 23 to 41 % moisture. Amphipods were absent from most sites within the Avon-Heathcote Estuary. The availability, life history and fecundity of P. excavatum were compared from intertidal mudflat sites in Brooklands Lagoon and Kairaki over a period of thirteen months. Four sediment core samples were collected at monthly intervals and P. excavatum IS population structure and life history pattern studied. The life history til· <: of P. excavatum can be characterised bY fast-growing, annual, iteroporous, bivoltine, females ovigerous throughout the year and thelygenous (female biased) population. P. excavatum showed relative consistency in abundance throughout the year with monthly densities ranging from 875.79 per 0.1 m-2 (July) to 1754.77 per 0.1 m-2 (December) at Brooklands Lagoon and 1031.83 per 0.1 m2 (November) to 1780.24 per 0.1 m2 (December) at Kairaki. There was a linear relationship between numbers of eggs per female and female length.
    [Show full text]
  • SCAMIT Newsletter Vol. 22 No. 6 2003 October
    October, 2003 SCAMIT Newsletter Vol. 22, No. 6 SUBJECT: B’03 Polychaetes continued - Polycirrus spp, Magelonidae, Lumbrineridae, and Glycera americana/ G. pacifica/G. nana. GUEST SPEAKER: none DATE: 12 Jaunuary 2004 TIME: 9:30 a.m. to 3:30 p. m. LOCATION: LACMNH - Worm Lab SWITCHED AT BIRTH The reader may notice that although this is only the October newsletter, the minutes from the November meeting are included. This is not proof positive that time travel is possible, but reflects the mysterious translocation of minutes from the September meeting to a foster home in Detroit. Since the November minutes were typed and ready to go, rather than delay yet another newsletter during this time of frantic “catching up”, your secretary made the decision to go with what was available. Let me assure everyone that the September minutes will be included in next month’s newsletter. Megan Lilly (CSD) NOVEMBER MINUTES The October SCAMIT meeting on Piromis sp A fide Harris 1985 miscellaneous polychaete issues was cancelled Anterior dorsal view. Image by R. Rowe due to the wildfire situation in Southern City of San Diego California. It has been rescheduled for January ITP Regional 2701 rep. 1, 24July00, depth 264 ft. The SCAMIT Newsletter is not deemed to be a valid publication for formal taxonomic purposes. October, 2003 SCAMIT Newsletter Vol. 22, No. 6 12th. The scheduled topics remain: 1) made to accommodate all expected Polycirrus spp, 2) Magelonidae, 3) participants. If you don’t have his contact Lumbrineridae, and 4) Glycera americana/G. information, RSVP to Secretary Megan Lilly at pacifica/G.
    [Show full text]
  • Life History Compendium of Exploited Hawaiian Fishes
    Life History Compendium of Exploited Hawaiian Fishes Prepared for Fisheries Local Action Strategy and Division of Aquatic Resources Prepared by K. Longenecker Hawai‘i Biological Survey Bishop Museum 1525 Bernice Street Honolulu, Hawai‘i 96817 R. Langston Windward Community College 45-720 Keahaala Road Kaneohe, Hawai‘i 96744 July 2008 1 Table of Contents INTRODUCTION .......................................................................................................................... 3 METHODS ..................................................................................................................................... 3 Description of life history parameters: ....................................................................................... 4 RESULTS ....................................................................................................................................... 6 HOLOCENTRIDAE ................................................................................................................... 7 Myripristis amaena (Castelnau, 1873) [3] .............................................................................. 7 Sargocentron diadema (Lacepède, 1802) [13] ..................................................................... 10 CARANGIDAE ........................................................................................................................ 13 Caranx ignobilis (Forsskål, 1775) [17] ................................................................................. 13 Caranx melampygus
    [Show full text]
  • Expression of Distal-Less, Dachshund, and Optomotor Blind in Neanthes Arenaceodentata
    Dev Genes Evol (2010) 220:275–295 DOI 10.1007/s00427-010-0346-0 ORIGINAL ARTICLE Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria Christopher J. Winchell & Jonathan E. Valencia & David K. Jacobs Received: 26 July 2010 /Accepted: 9 November 2010 /Published online: 30 November 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract The similarity in the genetic regulation of mesoderm. Domains of omb expression include the brain, arthropod and vertebrate appendage formation has been nerve cord ganglia, one pair of anterior cirri, presumed interpreted as the product of a plesiomorphic gene precursors of dorsal musculature, and the same pharyngeal network that was primitively involved in bilaterian ganglia and presumed interneurons that express dac. appendage development and co-opted to build appen- Contrary to their roles in outgrowing arthropod and dages (in modern phyla) that are not historically related vertebrate appendages, Dll, dac,andomb lack comparable as structures. Data from lophotrochozoans are needed to expression in Neanthes appendages, implying independent clarify the pervasiveness of plesiomorphic appendage- evolution of annelid appendage development. We infer forming mechanisms. We assayed the expression of three that parapodia and arthropodia are not structurally or arthropod and vertebrate limb gene orthologs, Distal-less mechanistically homologous (but their primordia might (Dll), dachshund (dac), and optomotor blind (omb), in be), that Dll’s ancestral bilaterian function was in sensory direct-developing juveniles of the polychaete Neanthes and central nervous system differentiation, and that arenaceodentata.
    [Show full text]
  • Fish Communities and Juvenile Habitat Associated with Non-Native Rhizophora Mangle L
    Hydrobiologia DOI 10.1007/s10750-017-3182-7 MANGROVES IN CHANGING ENVIRONMENTS Fish communities and juvenile habitat associated with non-native Rhizophora mangle L. in Hawai‘i Stacia D. Goecke . Susan M. Carstenn Received: 16 November 2016 / Revised: 30 March 2017 / Accepted: 3 April 2017 Ó Springer International Publishing Switzerland 2017 Abstract There are many well-documented ecosys- and higher percent mangrove cover. Stream mouth tem services for which mangroves have received estuaries with mangroves are important juvenile protection globally; however, in Hawai‘i, where no habitats for the native K. xenura and M. cephalus species of mangroves are native, these services have and the non-native Osteomugil engeli. These species, not been thoroughly evaluated. Twelve permanently two of which are important in recreational and open stream mouth estuaries on O‘ahu were sampled subsistence fisheries, will be most likely affected by from September to October 2014. Abiotic factors and mangrove removal based on abundance and distribu- fish community data were correlated with percent tion in mangrove-dominated stream mouth estuaries. mangrove cover and the Landscape Development Intensity Index to examine potential relationships Keywords Landscape development intensity index Á among mangroves, humans, and fish communities. Kuhlia xenura Á Mugil cephalus Á Stream mouth The three most abundant species, of 20 species caught, estuaries Á Juvenile abundance Á Invasive species were Kuhlia xenura, Mugil cephalus, and Mul- loidichthys flavolineatus. Of these three native spe- cies, 99% of the individuals caught were juveniles indicating the overall importance of stream mouth Introduction estuaries as juvenile habitat. Non-metric multidimen- sional scaling analysis of fish community data showed In Hawai‘i, there are two types of estuaries: bays or that K.
    [Show full text]
  • The Namanereidinae (Polychaeta: Nereididae). Part 1, Taxonomy and Phylogeny
    © Copyright Australian Museum, 1999 Records of the Australian Museum, Supplement 25 (1999). ISBN 0-7313-8856-9 The Namanereidinae (Polychaeta: Nereididae). Part 1, Taxonomy and Phylogeny CHRISTOPHER J. GLASBY National Institute for Water & Atmospheric Research, PO Box 14-901, Kilbirnie, Wellington, New Zealand [email protected] ABSTRACT. A cladistic analysis and taxonomic revision of the Namanereidinae (Nereididae: Polychaeta) is presented. The cladistic analysis utilising 39 morphological characters (76 apomorphic states) yielded 10,000 minimal-length trees and a highly unresolved Strict Consensus tree. However, monophyly of the Namanereidinae is supported and two clades are identified: Namalycastis containing 18 species and Namanereis containing 15 species. The monospecific genus Lycastoides, represented by L. alticola Johnson, is too poorly known to be included in the analysis. Classification of the subfamily is modified to reflect the phylogeny. Thus, Namalycastis includes large-bodied species having four pairs of tentacular cirri; autapomorphies include the presence of short, subconical antennae and enlarged, flattened and leaf-like posterior cirrophores. Namanereis includes smaller-bodied species having three or four pairs of tentacular cirri; autapomorphies include the absence of dorsal cirrophores, absence of notosetae and a tripartite pygidium. Cryptonereis Gibbs, Lycastella Feuerborn, Lycastilla Solís-Weiss & Espinasa and Lycastopsis Augener become junior synonyms of Namanereis. Thirty-six species are described, including seven new species of Namalycastis (N. arista n.sp., N. borealis n.sp., N. elobeyensis n.sp., N. intermedia n.sp., N. macroplatis n.sp., N. multiseta n.sp., N. nicoleae n.sp.), four new species of Namanereis (N. minuta n.sp., N. serratis n.sp., N. stocki n.sp., N.
    [Show full text]
  • Saltwater Inventory June 20
    Saltwater Adult Blue Face Angel Frilly Arrow Crab Po6ers Angel Adult Queen Angel Fusi Goby Queen Angel Aiptasia ea;ng Filefish Green Bubble Anenome Raccoon Bu6erfly Alleni Damsel Green Chromis Radiata Lionfish Astrea Snail Green Mandarin Goby Rainfordi Goby Auriga Bu6erfly Indigo Hamlet Red Throny Starfish Banggai Cardinal Keyhole Angel Red/Blue Leg Reef Hermit Bella Goby Kupang Damsel Reg Ocellaris Clown Bi Color Blenny Large Blackline blenny Regal Angel Bicinctus (red sea) Clown Lawnmower Blenny Ricordea Black Ocellaris Clown Le6ace Nudibranch Rintail Tang Black Photon Clown Lightning Maroon Clown Royal Gramma Blue (Hippo) Tang Long Horned Cowfish Saddleback Bu6erfly Blue Leg hermits Male Squamipinnis Anthias Sailfin Tang Blue Linkia Star Margarita Snails Sand SiQing Starfish Blue Reef Chromis Melanarus Wrasse Scooter Blenny Blue Spot Toby Puffer Mexican Turbo snail Seahare Boxer Crab Morse Code Maroon Clown Six Line Wrasse Bumble Bee Snail Nano Ocellaris Clown (CUTE!!) Snowflake Clown China Wrasse Nassarius Snails Snowflake Moray Eel Citron Goby Nearly Naked Clown Striped Blenny Cleaner Shrimp Orange Tube Anenome Striped Do6y Back Cleaner Wrasse Orangeback Fairy Wrasse Swallowtail Angel Condy Anemone Orangespot Shrimp Goby Talbots Damsel Copperband Bu6erfly Pearlscale Bu6erfly Thunder Maroon Clown Coral Beauty Angel Pearly Jawfish Timor Wrasse CSebae Anemone Peppermint Shrimp Tomini Tang (Med/Lg) Diamond Goby Pink Skunk Clown Trochus Snail Dragon Goby Pistol Shrimp (candy cane) Volitan Lion Emerald Crab Pistol Shrimp (Tiger) Wyoming White Clown Feather Duster PJ Cardinal Yellow Coris Wrasse Female Squamipinnis Anthias Porcupine Puffer Yellow Rabbi[ish Fighng Conch Yellow Watchman Goby Yellow Tangs French Angel 1.
    [Show full text]
  • Pterapogon Kauderni in Appendix II, in Accordance with Article II, Paragraph 2(A) of the Convention and Satisfying Criteria a and B in Annex 2A of Resolution Conf
    Original language: English CoP17 Prop. XXX CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September – 5 October 2016 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of Pterapogon kauderni in Appendix II, in accordance with Article II, paragraph 2(a) of the Convention and satisfying Criteria A and B in Annex 2a of Resolution Conf. 9.24 (Rev. CoP16). B. Proponent The European Union and its Member States* C. Supporting statement 1. Taxonomy 1.1 Class: Actinopterygii 1.2 Order: Perciformes 1.3 Family: Apogonidae 1.4 Genus, species or subspecies, including author and year: Pterapogon kauderni Koumans, 1933 1.5 Scientific synonyms: 1.6 Common names: English: Banggai Cardinalfish French: Poisson-cardinal de Banggai Spanish: Pez cardenal de Banggai 1.7 Code numbers: 2. Overview Pterapogon kauderni is a small marine fish endemic to the Banggai Archipelago off Central Sulawesi, eastern Indonesia (Allen and Steene, 2005; Vagelli and Erdmann, 2002). The species has an extremely restricted range of c. 5,500 km2 and occurs as isolated small populations in the shallows of 34 islands (Vagelli, 2011). The species has been subject to heavy collection pressure for the aquarium trade, with annual harvests reportedly having reached 900.000 fish/year in 2007 (Vagelli, 2008; 2011). The species’ biological characteristics make it vulnerable to overexploitation (low fecundity, extended parental care, and a lack of planktonic phase that precludes dispersal). A reported widespread decline in the abundance of * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • Appendix 5F – San Diego County Municipal Copermittees Sediment Monitoring Plan
    Appendix 5F – San Diego County Municipal Copermittees Sediment Monitoring Plan San Diego County Municipal Copermittees Sediment Monitoring Plan-Final Prepared For: County of San Diego Municipal Copermittees November 2014 San Diego County Municipal Copermittees Sediment Monitoring Plan-Final Prepared For: County of San Diego Municipal Copermittees Prepared By: Weston Solutions, Inc. 5817 Dryden Place, Suite 101 Carlsbad, California 92008 November 2014 San Diego County Municipal Copermittees Sediment Monitoring Plan-Final November 2014 TABLE OF CONTENTS 1.0 INTRODUCTION .............................................................................................................. 1 1.1 Background ............................................................................................................. 1 1.2 Monitoring Objective .............................................................................................. 2 2.0 MATERIALS AND METHODS ........................................................................................ 3 2.1 Field Collection Program ........................................................................................ 3 Station Selection .......................................................................................... 3 Permitting .................................................................................................... 4 Monitoring Season and Frequency .............................................................. 4 Sampling Vessels .......................................................................................
    [Show full text]