Perfect Breed???

Total Page:16

File Type:pdf, Size:1020Kb

Perfect Breed??? Perfect Breed??? Breed Characteristics: An Overview & Crossbreeding Programs Robert S. Wells, Ph.D., PAS Livestock Consultant 1 2 Start with the End in sight. In business to produce Beef 3 3 4 • What Breeds Should you consider? 2 Species of Cattle – Types – Heterosis • Bos taurus – British breeds (Angus, Hereford) – Complementarity effects – Continental breeds (Charolais, Simmental, – Marketing goals Limousin, Gelbvieh, etc.) • What is the Right Cow Type? • Bos indicus (Zebu, humped cattle) – Brahman • What is the Right Bull? – Nelore • Where to buy cattle? – Gir, – Guzerat, etc. 5 6 Angus (British) Pure Breeds Reputation: Carcass and Maternal, Growth??? 7 8 Red Angus Hereford (British) Reputation: Carcass and Maternal Reputation: Maternal, easy fleshing, longevity 9 Photo credit: http://innovationagmarketing.com/c-bar-red-angus-annual-female-sale-october-22-2017/ 10 Shorthorn (British) Red Poll (British) Reputation: Maternal and Carcass Milk, Carcass, Maternal 11 12 Photo credit: http://www.thatsfarming.com/news/red-poll-cattle Simmental (Continental) Simmental (Continental) Reputation: Maternal and growth 13 14 Gelbvieh (Continental) Gelbvieh (Continental) Reputation: Maternal and growth 15 16 Limousin (Continental) Charolais (Continental) Reputation: Growth Reputation: Growth 17 18 American Brahman (Bos indicus) Longhorn Reputation: Hardiness, Lean beef Maternal, lean, hardiness; insect, disease & heat tolerance 19 20 Photo credit: https://v8ranch.com/ Photo credit: http://www.longhorntours.com/Promo_Photos/Texas_Longhorn/L_S_5345.HTM Corriente Waygu Reputation: Hardiness, roping stock Carcass Quality, Light birthweights 21 22 Photo credit: http://www.gourmetexception.com/details-wagyu+beef-47.html Akaushi Composites and Cross Breeds Marbling, fertility 23 24 Photo credit: http://www.akaushigenetics.com/about-akaushi-cows.php Santa Gertrudis Beefmaster Maternal Heterosis, Growth, 25 26 Brangus Balancer Carcass, Growth, Maternal, Heat Tolerance Photo credit: http://genetrustbrangus.com/ltd/ 27 Photo credit: http://hogmountainfarm.com/pillow-talk/ 28 Simbrah LimFlex 29 Photo credit: https://www.bovine-elite.com/simmental/FBResurrection851T_lg.jpg 30 F1 Tiger Stripe Black Baldy 31 Photo credit: https://southtexascattlemarketing.com/gg-cattle-company/ 32 Super Baldy Commercial Angus 33 34 Ultra Black Crossbreeding Hybrid vigor = Heterosis 35 36 Hybrid Vigor (2+3)/2 = 3.5 The increase/decrease in a particular trait when compared to the average of that trait for each parent. Photo credit: http://www.brangus.com.au/index.php/brangus/crossbreeding 37 38 LimFlex Bull: Heterosis = Hybrid Vigor Maximum Heterosis Angus x Limousin F1 x F1 Cross 700 Parents are from 4 600 unrelated breeds 500 Tiger Stripe Cow: Brahman X Hereford 400 300 Weaning weight, lbs weight, Weaning 200 100 May decrease uniformity, especially 0 Breed A in multiple bull herds. Breed AxB Breed B 39 40 Levels of Heterosis Maternal Hybrid Vigor Individual Maternal Total Trait Heterosis, % Heterosis, % Heterosis, % Weaning rate 0 8 8 Age @ Puberty -3 -3 Maternal hybrid vigor increases calving Birth weight 4 2 6 Weaning weight 5 6 11 rate (6%), weaning rate (8%), weaning Yearling weight 4 4 weight (6%), and birth weight (2%). Cow Condition -4 -4 Carcass weight 3 3 USDA quality grade 2 2 Rib eye area 2 2 Feed conversion, (F:G) -2 -2 Days on feed -4 -4 Calf WW/exposed cow 18 Cow longevity 38 41 Cow lifetime productivity 25 42 Economics of Heterosis Economics of Heterosis – Cow Breed A x Terminal bull • What does it cost? Original Scenario: • It depends. • 100 cows; Cow Breed A x Bull Breed A • • Cow size 525 lb weaning weight • Average weaning rate 82% – About 6 % increase cost/100 lbs BW • 43,050 lbs marketed • Milk production Switch to – ~1.5 % increase in energy requirement/lb of milk • Cow Breed A x Bull Breed B – ~2.7 % increase in CP requirement/lb of milk • Individual heterosis (+5%) • Make sure she fits your environment – 551 lb weaning weight F1 calf – Stocking rate • 45,203 lbs marketed – Supplemental feed • +2152 lbs/year = +$5,725.65/year 43 44 Economics of Heterosis - F1 cow x Terminal bull Capturing Heterosis Original Scenario: % Increase in Calf • System % Max Heterosis Cow Breed A x Bull Breed A Wt./Cow Exposed • 525 lb weaned calf Pure breeds 0 0 • Average weaning rate 82% • 43,050 lbs marketed 2 breed rotation 67 16 Switch to 3 breed rotation 86 20 • F1 cow X (Terminal Bull Breed C) 2 breed composite 50 12 • +WW total heterosis +25% {↑ Weaning rate (90%) & weight(11%)} 3 breed composite 63 15 Term. Sire/purch. 100 23-28 F1 female 45 46 Brett Barham, Univ. of Arkansas Economics of Heterosis - F1 cow x Terminal bull Economics of Heterosis • Original Scenario: +$5,725.65 increased weaning weight (Bull Affect) • Cow Breed A x Bull Breed A – Breed A cow x terminal bull • 525 lb weaned calf – (½ Breed A x ½ Terminal bull breed calf) • Average weaning rate 82% • +$40,295 increase in weaning rate & weight • 43,050 lbs marketed – F1 cow x terminal bull breed Switch to – (½ F1 x Terminal bull breed calf) • F1 cow X (Terminal Bull Breed C) • Keep after weaning and $$$ increase as you can • {↑ Weaning rate (90%) & weight(11%)} +WW total heterosis +25% take advantage of additional heterotic effects of • 656 lb calf ➢+131 lbs improved growth rates • 59,040 lbs • +15,990 lbs = +$40,295 47 OK weighted average weights on 10-24-14, USDA-AMS data 48 Heritability vs. Heterosis Heritability Traits h2 Magnitude Reproductive < .2 Low Growth .2-.4 Moderate Carcass .4-.6 High Few traits have h2 > .6 49 50 Heritability Estimates The Ideal Cow Height 0.85 REA 0.70 Tenderness 0.60 Birth weight 0.45 Feedlot gain 0.34 Weaning weight 0.24 Fertility 0.10 Calving interval 0.08 Conception rate 0.07 51 52 Photo credit: https://www.turbosquid.com/3d-models/maya-dna-strands/609885 The Ideal Cow Parting Thoughts • Early puberty • Never misses a breeding season (1 calf/365 d) • Must be able to manage for the • Calves unassisted benefits • Doesn’t require a lot of supplemental feed • Heterosis will not make up for poor • Easy fleshing animal husbandry/management • Converts forage to lbs of raised calf • Stays in the herd a long time • Heterosis will not make up for poor • Good temperament bull selection • Good muscling and carcass characteristics • Adequate but not too much milk • Looks good doing all the above 53 54 Robert Wells, PAS, Ph.D. 580-224-6434 [email protected].
Recommended publications
  • Using Beef Cattle Genetics to Manage
    Tall Fescue Endophyte Toxicosis in Beef Cattle: Clinical Mode of Action and Potential Mitigation through Cattle Genetics Richard Browning, Jr., Ph.D. Cooperative Agricultural Research Program Tennessee State University Nashville, TN 37209-1561 INTRODUCTION Tall fescue (Festuca arundinacea Schreb.) is the most commonly used cultivated grass in the United States to feed beef cattle. Tall fescue is a cool-season perennial grass that many cattle producers ‘can’t live with, but can’t live without’ because of its hardiness and good forage yields, but adverse effects on cattle well-being and yields. The history of this forage and its effects on animal performance have been extensively reviewed (Hemken et al., 1984; Bacon et al., 1986; Stuedemann and Hoveland, 1988; Porter and Thompson, 1992; Stuedemann and Thompson, 1993; Porter, 1994; Bacon, 1995; Paterson et al., 1995). Tall fescue was unintentionally introduced from Europe sometime in the 1800s. Early university research on growing tall fescue in the U.S. began between 1907 and 1918 in Oregon and in Kentucky in 1931 (Alderson and Sharp, 1993). Tall fescue, primarily the Kentucky-31 variety, was planted across the U.S. throughout the 1940s and 1950s because of its excellent growth under various environmental stressors. Tall fescue may be found across the eastern half of the U.S. and the Pacific Northwest covering an estimated 25 to 40 million acres of pasture and hayland. It has been estimated that over 90% of tall fescue pastures in the U.S. are infected with the fungal endophyte Neotyphodium coenophialum (Bacon and Siegel, 1988; Glenn et al., 1996).
    [Show full text]
  • Crossbreeding of Cattle in Africa
    Journal of Agriculture and Environmental Sciences June 2018, Vol. 7, No. 1, pp. 16-31 ISSN: 2334-2404 (Print), 2334-2412 (Online) Copyright © The Author(s). All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/jaes.v7n1a3 URL: https://doi.org/10.15640/jaes.v7n1a3 Crossbreeding of Cattle in Africa R Trevor Wilson1 Abstract Africa is endowed with a very wide range of mostly Bos indicus indigenous cattle breeds. A general statement with regard to their performance for meat or milk is that they are of inferior genetic value. Attempts to improve their performance have rarely relied on within-breed improvement but have concentrated on crossing to supposedly superior exotic Bos taurus types. Exotic types have not always – indeed have rarely -- been chosen on objective criteria and the imported breeds generally indicate the colonial past of individual African countries rather than on use of “the right animal in the right place”. Most attempts at increasing output have been undertaken under research station conditions. Results on station have been very variable but the limited success achieved has rarely been carried over in to the general African cattle population. This paper documents a number of attempts to alter the genetic make-up of African cattle in several countries and discusses the reasons for the failure of most of these. Keywords: Bos indicus, Bos taurus, livestock experiments, milk production, meat production 1. Introduction African countries differ greatly in climatic, ecological and agricultural conditions and in socioeconomic factors. In many countries, nonetheless, cattle are the most important livestock species.
    [Show full text]
  • Postweaning Growth and Carcass Traits in Crossbred Cattle from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano Maternal Grandsires E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Roman L. Hruska U.S. Meat Animal Research U.S. Department of Agriculture: Agricultural Center Research Service, Lincoln, Nebraska 2010 Postweaning growth and carcass traits in crossbred cattle from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano maternal grandsires E. Casas USDA, ARS, US Meat Animal Research Center, [email protected] R. M. Thallman USDA-ARS Meat Animal Research Center, [email protected] L. A. Kuehn USDA- ARS, US Meat Animal Research Center, [email protected] L. V. Cundiff US Meat Animal Research Center, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/hruskareports Casas, E.; Thallman, R. M.; Kuehn, L. A.; and Cundiff, L. V., "Postweaning growth and carcass traits in crossbred cattle from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano maternal grandsires" (2010). Roman L. Hruska U.S. Meat Animal Research Center. 374. http://digitalcommons.unl.edu/hruskareports/374 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Roman L. Hruska U.S. Meat Animal Research Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published December 4, 2014 Postweaning growth and carcass traits in crossbred cattle from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano maternal grandsires1,2 E. Casas,3 R. M. Thallman, L. A. Kuehn, and L. V. Cundiff USDA, ARS, US Meat Animal Research Center, Clay Center, NE 68933 ABSTRACT: The objective of this study was to char- est marbling scores when compared with other grand- acterize breeds representing diverse biological types for sire breeds.
    [Show full text]
  • Multiple Choice Choose the Answer That Best Completes Each Statement Or Question
    Name Date Hour 5 The Beef Cattle Industry Multiple Choice Choose the answer that best completes each statement or question. _______ 1. Early settlers primarily used cattle as ____ . A. work animals B. a source of meat C. a source of milk D. symbols of wealth _______ 2. The modern cattle industry is concentrated in the ____ . A. South and Midwest B. South and Southwest C. North and Northwest D. North and Midwest _______ 3. Cattle drives were necessary in the past because of the lack of ____ . A. retail stores B. refrigeration C. slaughterhouses D. year-round grazing _______ 4. Which beef cattle breed is known for its solid black color and excellent meat quality? A. Angus B. Hereford C. Shorthorn D. Chianina _______ 5. Which beef cattle breed is from northern England and was often called a Durham after the county in which it originated? A. Angus B. Hereford C. Shorthorn D. Chianina Introduction to Agriscience | Unit 5 Test CIMC 1 _______ 6. Which beef cattle breed originated in England and was originally much larger, weighing more than 3,000 pounds, than it is today? A. Angus B. Hereford C. Shorthorn D. Chianina _______ 7. Which beef cattle breed is red with a white face and may also have white on the neck, underline, legs, and tail switch? A. Angus B. Hereford C. Shorthorn D. Chianina _______ 8. Which beef cattle breed is one of the oldest breeds in the world and originated in Italy? A. Angus B. Hereford C. Shorthorn D. Chianina _______ 9. Which beef cattle breed originated in central France and was developed as a dual-purpose breed and is typically white or off-white in color? A.
    [Show full text]
  • Proc1-Beginning Chapters.Pmd
    Implications of Breed Type Evaluations Larry V. Cundiff Research Leader, Genetics and Breeding Roman L. Hruska U.S. Meat Animal Research Center Agricultural Research Service U.S. Department of Agriculture Clay Center, NE ()(,) Introduction 23.3 Quality, quantity, and cost of feed resources available for beef production vary from one region of the country to another and within regions, depending upon climatic factors and natural 23.3 resources available in specific production 14.8 situations. Diversity among breeds can be exploited by crossbreeding to optimize performance levels 8.5 and to match genetic resources with the climatic environment, feed resources, and consumer Percent preferences for lean and tender beef products. 8.5 Crossbreeding also provides for significant benefits 14.8 of heterosis on components of production efficiency. In this presentation, research results will be reviewed focusing on effects and utilization of 8.5 8.5 heterosis and breed differences, and on the importance of matching genetic potential with Straightbred Straightbred X-bred consumer preferences and the climatic cows cows cows environment. straightbred X-bred X-bred calves calves calves Heterosis Figure 1. Cumulative effects of heterosis for weight of calf weaned per cow exposed to breeding in crosses A crossbreeding experiment involving of Hereford, Angus, and Shorthorns (Cundiff et al., Herefords, Angus, and Shorthorns demonstrated 1974). that weaning weight per cow was increased by about 23% (Cundiff et al., 1974) due to beneficial was significantly greater than that of either effects of heterosis on survival and growth of straightbred Angus or Herefords (Nunez et al., crossbred calves and on reproduction rate and 1991; Cundiff et al., 1992).
    [Show full text]
  • For Immediate Release Brangus Are Not “Eared” Cattle
    For Immediate Release Contact: Doc or Patricia Spitzer FAIR PLAY, SC [email protected] or November 8, 2011 (864)972-9140 or (864)710-0257 Brangus Are Not “Eared” Cattle First and foremost we need to wrap our minds around the fact that God created cattle, he did not create breeds. And while in some cases natural barriers such as oceans and mountain ranges did affect genetic selection, for the most part it is humans who created breeds. And, if you go back far enough in history there really are no pure breeds, only our inflated misconceptions that they exist. That being said, there are two species that make up all cattle of the world; Bos Taurus cattle are primarily cattle populations that originated in the more temperate climates and Bos Indicus cattle populations developed in the more tropical regions of the world. Generally the US beef industry further subdivides Bos Taurus beef cattle into two groups. Continental Breeds of cattle are those breeds originating on the European Continent while British Breeds were originally from selections of bovine populations from the British Isle. It is also typical of US producers to wrongly lump all Bos Indicus breeds of cattle together. This is rather astounding as there are more recognized different breeds of Bos Indicus derivation scattered around the world than specific breeds of Bos Taurus derivation. Americans have also further compounded the confusion by creating new breeds by crossing a variety of specifically recognized Bos Indicus cattle to create the American Brahman and crossing cattle of Bos Indicus and Bos Taurus origin to create what some refer to as the American Breeds.
    [Show full text]
  • Comparing SNP Panels and Statistical Methods for Estimating Genomic Breed Composition of Individual Animals in Ten Cattle Breeds
    He et al. BMC Genetics (2018) 19:56 https://doi.org/10.1186/s12863-018-0654-3 RESEARCH ARTICLE Open Access Comparing SNP panels and statistical methods for estimating genomic breed composition of individual animals in ten cattle breeds Jun He1,2†,YageGuo1,3†, Jiaqi Xu1,4, Hao Li1,5,AnnaFuller1, Richard G. Tait Jr1,Xiao-LinWu1,5* and Stewart Bauck1 Abstract Background: SNPs are informative to estimate genomic breed composition (GBC) of individual animals, but selected SNPs for this purpose were not made available in the commercial bovine SNP chips prior to the present study. The primary objective of the present study was to select five common SNP panels for estimating GBC of individual animals initially involving 10 cattle breeds (two dairy breeds and eight beef breeds). The performance of the five common SNP panels was evaluated based on admixture model and linear regression model, respectively. Finally, the downstream implication of GBC on genomic prediction accuracies was investigated and discussed in a Santa Gertrudis cattle population. Results: There were 15,708 common SNPs across five currently-available commercial bovine SNP chips. From this set, four subsets (1,000, 3,000, 5,000, and 10,000 SNPs) were selected by maximizing average Euclidean distance (AED) of SNP allelic frequencies among the ten cattle breeds. For 198 animals presented as Akaushi, estimated GBC of the Akaushi breed (GBCA) based on the admixture model agreed very well among the five SNP panels, identifying 166 animals with GBCA = 1. Using the same SNP panels, the linear regression approach reported fewer animals with GBCA = 1.
    [Show full text]
  • Purebred Livestock Registry Associations
    Purebred livestock registry associations W. Dennis Lamm1 COLORADO STATE UNIVERSITY EXTENSION SERVICE no. 1.217 Beef Devon. Devon Cattle Assn., Inc., P.O. Box 628, Uvalde, TX 78801. Mrs. Cammille Hoyt, Sec. Phone: American. American Breed Assn., Inc., 306 512-278-2201. South Ave. A, Portales, NM 88130. Mrs. Jewell Dexter. American Dexter Cattle Assn., P.O. Jones, Sec. Phone: 505-356-8019. Box 56, Decorah, IA 52l01. Mrs. Daisy Moore, Amerifax. Amerifax Cattle Assn., Box 149, Exec. Sec. Phone: 319-736-5772, Hastings, NE 68901. John Quirk, Pres. Phone Friesian. Beef Friesian Society, 213 Livestock 402-463-5289. Exchange Bldg., Denver, CO 80216. Maurice W. Angus. American Angus Assn., 3201 Freder- Boney, Adm. Dir. Phone: 303-587-2252. ick Blvd., St. Joseph, MO 64501. Richard Spader, Galloway. American Galloway Breeders Assn., Exec. Vice. Pres. Phone: 816-233-3101. 302 Livestock Exchange Bldg., Denver, CO 80216. Ankina. Ankina Breeders, Inc., 5803 Oaks Rd,. Cecil Harmon, Pres. Phone: 303-534-0853. Clayton, OH 45315. James K. Davis, Ph.D., Pres. Galloway. Galloway Cattle Society of Amer- Phone: 513-837-4128. ica, RFD 1, Springville, IA 52336. Phone: 319- Barzona. Barzona Breeders Assn. of America, 854-7062. P.O. Box 631, Prescott, AZ 86320. Karen Halford, Gelbvieh. American Gelbvieh Assn., 5001 Na- Sec. Phone: 602-445-2290. tional Western Dr., Denver, CO 80218. Daryl W. Beefalo. American Beefalo Breeders, 1661 E. Loeppke, Exec. Dir. Phone: 303-296-9257. Brown Rd., Mayville 22, MI 48744. Phone: 517-843- Hays Convertor. Canadian Hays Convertor 6811. Assn., 6707 Elbow Dr. SW, Suite 509, Calgary, Beefmaster.
    [Show full text]
  • Breeding Heifer Validation Program Major Livestock Show Breed Eligibility Guide
    Breeding Heifer Validation Program Major Livestock Show Breed Eligibility Guide This document is only to serve as a resource for determining the eligibility of specific breeds at major livestock shows. This is not a complete list of breeds eligible and livestock shows reserve the right to add/remove breeds at the discretion of show management. *Always refer to respective livestock show’s official rules and information. ü 1 ORB – Other Registered Breeds (Bos Taurus type, non-American), ARB – American Registered Breeds (Bos indicus type) ü 2 ORH – Other Recorded Heifer (Bos Taurus type, non-American) ü ARB – American Registered Breeds (Bos indicus type) ü n/a – means not applicable (i.e., breed not eligible for exhibition at show) BREED HLSR 1 SALE 1 SAN ANGELO 1 RODEO AUSTIN 1 FORT WORTH 2 STATE FAIR 1 HOT FAIR Angus Angus Angus Angus Angus Angus Angus Angus Beefmaster Beefmaster Beefmaster Beefmaster Beefmaster Beefmaster Beefmaster Beefmaster Beefmaster ARB ARB ARB ARB n/a ARB ARB E6 Certified (min 50% Beefmaster) Beefmaster ARB ARB ARB ARB n/a ARB ARB Advancer Braford ARB ARB ARB ARB n/a ARB ARB Braford F-1 ARB n/a ARB ARB n/a ARB ARB Brahman Grey Brahman OR Brahman ARB Brahman Brahman Grey Brahman OR Grey Brahman Red Brahman (Red & Grey (Red & Grey (Red & Grey Red Brahman OR Combined) Combined) Combined) Red Brahman Page 1 of 5 Breeding Heifer Validation Program Major Livestock Show Breed Eligibility Guide BREED HLSR 1 SALE 1 SAN ANGELO 1 RODEO AUSTIN 1 FORT WORTH 2 STATE FAIR 1 HOT FAIR Brahman ARB ARB ARB ARB n/a ARB ARB Golden Certified
    [Show full text]
  • Impacts of Beef Cattle Shortcourses
    Impacts of Beef Cattle Shortcourses Dr. Tim Olson Department of Animal Sciences University of Florida, Gainesville The first Breeder’s and Herdsmen’s Short - probably not such a good idea for the showman Course, the predecessor of the Beef Cattle Short either. Courses that have now been held for 50 years, was held on June 18th and 19th, 1951 at the University Mr. Joe Keefauver, an Angus breeder from of Florida. As the title of this first short course Tennessee, spoke on breeding and commented implies, the emphasis was on the production of that although the best cattle come from purebred cattle and the event was sponsored by linebreeding, most people can’t successfully do it the Florida Angus Breeders’ Association. About and most cattle aren’t good enough to be linebred 75 attended this first short course whose topics without running the risk of bringing out bad included fundamentals of feeding beef cattle by characteristics. A lot of emphasis was placed on Dr. R. S. Glasscock of the UF Animal Husbandry visual evaluation by the speakers, as might have Department, selection of breeding females by Joe been expected for the time, but Mr. Keefauver Keefauver, an Angus breeder from Tennessee and also added “You can’t tell for sure by looking, selection of a herd bull by Rae Ferrell, an Angus production is the ultimate test.” Mr. Keefauver breeder from Georgia. A local Gainesville was ahead of his time. Another speaker, however, veterinarian, Dr. Karl Owens discussed herd made the comment that “You won’t find a bull health issues including Bangs, Blackleg, Scours that is too short-legged.” Unfortunately this and Footrot.
    [Show full text]
  • A Compilation of Research Results Involving Tropically Adapted Beef Cattle Breeds
    A COMPILATION OF RESEARCH RESULTS INVOLVING TROPICALLY ADAPTED BEEF CATTLE BREEDS S-243 and S-277 Multistate Research Projects Southern Cooperative Series Bulletin 405 http://www.lsuagcenter.com/en/crops_livestock/livestock/beef_cattle/breeding_genetics/trpoical+breeds.htm Contact information: Dr. David G. Morrison, Associate Director Louisiana Agricultural Experiment Station P. O. Box 25055 Baton Rouge, Louisiana 70894-5055 Phone: 225-578-4182 FAX: 225-578-6032 Email: [email protected] ISBN: 1-58161-405-5 State Agricultural Experiment Stations do not discriminate on the basis of race, sex, color, religion, national origin, age, disability, or veteran status in provision of educational opportunities or employment opportunities and benefits. - 1 - Preface The Southern region of the U.S. contains approximately 42% of the nation’s beef cows and nearly 50% of its cow-calf producers. The region’s environment generally can be characterized as subtropical, i.e. hot, humid summers with ample rainfall supporting good forage production. Efficient cow-calf production in the humid South is dependent on heat and parasite tolerance and good forage utilization ability. Brahman and Brahman-derivative breeds generally possess these characteristics and excel in maternal traits. Consequently, they have been used extensively throughout the Southern Region in crossbreeding systems with Bos taurus breeds in order to exploit both breed complementarity and heterosis effects. However, several characteristics of Brahman and Brahman crossbred cattle, such as poor feedlot performance, lower carcass quality including meat tenderness, and poor temperament, whether real or perceived can result in economic discounts of these cattle. Therefore, determining genetic variation for economically important traits among Brahman and Brahman-derivative breeds and identifying tropically adapted breeds of cattle from other countries that may excel in their performance of economically important traits in Southern U.S.
    [Show full text]
  • Florida Agriculture Statistical Directory
    Dear Friends of Agriculture, It is my pleasure to present the 2008 Florida Agriculture Statistical Directory. This report presents a wealth of information about Florida’s vast and varied agricultural production through data that details land use, crop yields, commodity prices, crop rankings and more. This yearly report is invaluable to anyone who is involved in this dynamic business or who wants to better understand its complexities. The tables, charts and statistics contained in this report do an exceptional job of measuring the inputs and outputs, and presenting Florida agriculture in the context of “hard numbers.” But there is more to our state’s agricultural industry: our hard-working farmers, whose dedication, hard work and perseverance have made Florida agriculture into the diverse and highly productive industry that is respected throughout the globe. As evidenced by the ever-growing popularity of the “Fresh from Florida” label, consumers worldwide appreciate and seek out the quality products that our farmers provide. Maintaining these standards of excellence seldom comes easily as each year presents new challenges for Florida’s 40,000 commercial farmers. But, whether confronted by hurricanes, freezes, pests, diseases or fierce international competition, our state’s producers continually show that they are up to the test. Enterprising spirit, love of the land, and pride in their products are all hallmarks of the well- earned reputation of Florida’s farmers. In addition to enjoying the quality products that our farmers produce, Florida’s agricultural production benefits our state’s residents in other important ways as well. Florida agriculture has an overall economic impact estimated at more than $100 billion annually, making it a sound pillar of the state’s economy.
    [Show full text]