Profile of Gary Ruvkun

Total Page:16

File Type:pdf, Size:1020Kb

Profile of Gary Ruvkun PROFILE Profile of Gary Ruvkun wash in the faint glow of a fluo- Brush with Molecular Biology rescent lamp, a pair of serpentine The story of Ruvkun’s metamorphosis Anematode worms lie on a Petri from a keen undergraduate into a leading plate, their see-through bodies light in his field of study begins at Har- magnified 100-fold by one of several vard University, where he enrolled in microscopes arrayed in a darkened bay in a Ph.D. program in 1976 upon returning National Academy of Sciences member to the United States. Like many other Gary Ruvkun’s laboratory at Massachu- scientific institutions across the world in setts General Hospital. While one of the the mid-1970s, Harvard was astir with the worms wiggles its way around the plate, promise of recombinant DNA technol- the other shows no signs of life, ogy, and Ruvkun wasted no time em- its midsection ruptured and its innards bracing its tools. “My undergraduate strewn asunder. A filter slides into place, education had not prepared me at all for and the worms are bathed in a dull recombinant DNA, but I immersed my- green haze. The wiggling worm has a bea- self into its culture at Harvard, much of con of nerve cells in its head, the ganglia which was James Watson’s creation from lit up by a genetic trick that has rescued a decade earlier,” Ruvkun says. Propelled the worm from death; its neighbor wears Gary Ruvkun. by a desire to be a part of the culture of no such beacon. The worms were deprived basic molecular biology, all while per- of a tiny RNA molecule, called a micro- forming science with the potential to im- RNA, which helps shepherd them through not 5-year-old children. And yet that’s prove human lives, Ruvkun gravitated their development. Through genetic engi- what it did,” he says. So much so that toward molecular plant science research, neering, Ruvkun’s graduate student has checkout lanes in grocery stores, which thanks partly to his previous experiences rescued the wiggling worm by return- now showcase glossy magazines, then working with plants and traveling in the ing its microRNA along with a touted encyclopedias of science, written by developing world. In Harvard plant mo- gene for the green fluorescent beacon. the likes of Nobel laureates Linus Pauling, lecular biologist Fred Ausubel, whose Through such experiments aimed at un- George Beadle, and Edward Lewis. work was aimed at engineering nitrogen- raveling the genetics of development, “There was a genuine celebration of mid- fixing ability into plants to improve agri- molecular biologist Ruvkun helped un- dle-class America embracing science and cultural productivity, Ruvkun found earth a world of microRNAs—snippets of technology,” he recalls. a mentor. In the six years following, RNA that play a range of regulatory roles As time wore on, Ruvkun’s amateur Ruvkun and Ausubel unraveled the ge- —in living cells. Today, microRNAs, radio hobby led to an interest in elec- netics of nitrogen fixation, notably dem- which represent the smallest genes known tronics, but as he set out to pursue an onstrating that the genes encoding the to biologists, have become an intense fo- undergraduate degree in electrical engi- enzyme that catalyzes the reaction were cus of basic research, their study bearing neering at the University of California, remarkably conserved across several spe- implications for diseases such as diabetes, Berkeley, he found physics more appeal- cies of nitrogen-fixing bacteria (1). The schizophrenia, and cancer. ing. “Physics at Berkeley was taught in finding also suggested that some genes for Emblematic of the Sputnik era that a much more inspirational way than elec- the nitrogenase enzyme had been either spurred the scientific bent of many trical engineering; the courses featured conserved since their origin or exchanged researchers, Ruvkun’s childhood interest one scientific revolution after another,” among species in their recent evolution- in science began during the 1960 launch Ruvkun says. Coming of age during a ary past. “It was a prototype paper for of the first US communications satellite period of economic, social, and political me because I’ve since used similar strat- Echo, which could be seen as it inched turmoil in a city that is often considered egies to discover homologies between across the night skies over the San Fran- a home to the hippie movement, Ruvkun proteins and evolutionary conservation of cisco Bay area, where he grew up. His graduated in 1973 with a bachelor’s de- genes,” Ruvkun says, recalling a theme father, a civil engineer, nurtured his na- gree in biophysics, uncertain of the future. that recurs with metronomic regularity scent interest in astronomy into abiding “Many of my peers at the time wanted to throughout his research career. curiosity about the natural world. His study society’s ills, and finishing in science The theme played out during his post- mother set a fine example for persever- was fairly rare. There was a prevailing doctoral work at Massachusetts Institute ance by graduating from college at the sense that you had to adhere to the norms of Technology and at Harvard, under the unlikely age of 50. In Ruvkun’s remem- of radical society, so polarization was rife,” tutelage of Walter Gilbert and Robert brances of his childhood, hints of a scien- Ruvkun says. Eager to find employment at Horvitz, both molecular biologists. Only tific temperament feature prominently: the height of a crushing recession and to this time his workhorse was a tiny, soil- television broadcasts of the Mercury and explore the world outside academia, dwelling roundworm called Caeno- Gemini rocket launches, the gift of a Ruvkun moved northward, working in rhabditis elegans, whose transparent adult telescope, hours spent poring over as- a tree-planting cooperative in Eugene, body with an uncannily precise 959 cells tronomy books at the Oakland Public Oregon for a year. When the grueling offers researchers a picture window Library, and a hobbyist’s passion for ham work took its toll, Ruvkun embarked on into the workings of genes in cells. “De- radio. “I was fascinated with under- a yearlong trip to Tierra del Fuego in velopmental biology was just coming into standing how the circuits generated and South America. The trip, Ruvkun says, its own, and the nematode worm seemed decoded radio signals,” Ruvkun says. But helped him cultivate people skills, explore those hints, he adds, also reflect a wide- other cultures, and broaden his perspec- spread cultural shift. “President Kennedy’s tive before narrowing his focus, ultimately This is a Profile of a recently elected member of the Na- plan to land men on the moon was really transforming him for the pursuit of tional Academy of Sciences to accompany the member’s meant to inspire engineers and scientists, his calling. Inaugural Article on page 1201 in issue 4 of volume 108. www.pnas.org/cgi/doi/10.1073/pnas.1111960108 PNAS | September 13, 2011 | vol. 108 | no. 37 | 15043–15045 Downloaded by guest on September 29, 2021 small enough to be described in a some- project had just started. I did a database what digital way,” recalls Ruvkun. search of the let-7 genetic sequence with Through molecular cloning experiments, my phone-in modem at home, looking for Ruvkun, his then postdoctoral collabora- let-7 counterparts in other animals—and tor Victor Ambros, and Horvitz pin- there it was: a human homolog for the pointed genes involved in determining the gene,” Ruvkun recalls. Soon thereafter, fate of the roundworm’s developing cells, Ruvkun and his postdoctoral fellow Amy as the worm progresses through its life Pasquinelli requested from researchers stages (2). Notable among their findings, around the world RNA samples from Ruvkun uncovered how a gene dubbed a menagerie of animals, from sea urchins lin-14, which acts like a master time- through earthworms through fruit flies keeper for the minutely orchestrated through mice. “A new FedEx bearing chronology of the worm’s embryonic de- RNA from a different organism would velopment, is itself controlled, shedding Expression of a microRNA rescued the glowing come in every day, and we would keep light on regulatory RNA sequences that nematode (Left) from death (Right). Image cour- running Northern blots and keep finding clock the gene’s activity (3). These and tesy of Zhen Shi (Massachusetts General Hospital, let-7,” he says. “The Nature paper that other findings helped signal Ruvkun’s Boston, MA). resulted from that work has nearly 20 arrival on the molecular biology stage and authors,” he adds, referring to the 2000 secure him an assistant professorship at report that helped emphatically ring Harvard University and Massachusetts A Star Turn for RNA microRNAs on the map for most biolo- General Hospital in 1985. Although the idea of regulatory RNAs had gists (6). Yet the account of Ruvkun’s discoveries slowly begun to gain ground in the mo- Around the time Ruvkun announced on the worm’s embryonic development is lecular biology lexicon, most such RNA the discovery of let-7, plant molecular no more than a frame story: nested within molecules were hundreds of nucleotides in biologist David Baulcombe, then at the it is the narrative of the discovery of the length, not tiny snippets of a size similar to Sainsbury Laboratory in Norwich, United developmental role of the gene lin-4 by that of lin-4. Simultaneously discovered Kingdom, reported similar 25-nucleotide- Ambros, Ruvkun’s longtime collaborator in chicken lymphomas, these regulatory long RNA molecules that regulated plant and University of Massachusetts Medical noncoding RNAs had been observed to physiology in a process known as RNA School molecular geneticist. Ambros had interact with genes implicated in cancer.
Recommended publications
  • USA Education Ph.D., Biology, Massachusetts Institute of Tech
    Victor R. Ambros, Ph.D. Silverman Professor of Natural Sciences Program in Molecular Medicine University of Massachusetts Medical School373 Plantation Street, Suite 306 Worcester, MA 01605 (508) 856-6380 [email protected] Personal Born: Hanover, NH, USA on December 1, 1953 Citizenship: USA Education Ph.D., Biology, Massachusetts Institute of Technology, Cambridge, MA 1976-1979 Thesis Title: The protein covalently linked to the 5' end of poliovirus RNA Advisor: Dr. David Baltimore B.S., Biology, Massachusetts Institute of Technology, Cambridge, MA 1971-1975 Professional Appointments Silverman Professor of Natural Sciences 2009-present Co-Director, RNA Therapeutics Institute 2009-2016 Professor, Program in Molecular Medicine 2008-present University of Massachusetts Medical School, Worcester, MA Professor of Genetics, Dartmouth Medical School 2001-2007 Professor, Biological Sciences, Dartmouth Medical School 1996-2001 Associate Professor, Biological Sciences, Dartmouth Medical School 1992-1996 Associate Professor, Department of Cellular and Development Biology, 1988-1992 Harvard University, Cambridge, MA Assistant Professor, Department of Cellular and Development Biology, 1985-1988 Harvard University, Cambridge, MA Postdoctoral Research 1979-1985 Supervisor: Dr. H. Robert Horvitz Massachusetts Institute of Technology, Cambridge, MA Graduate Research 1976-1979 Supervisor: Dr. David Baltimore Massachusetts Institute of Technology, Cambridge, MA Research Assistant 1975-1976 Supervisor: Dr. David Baltimore Center for Cancer Research,
    [Show full text]
  • 2008 Harvard / Paul F
    The 2008 Harvard / Paul F. Glenn Symposium on Aging June 23, 2008 Paul F. Glenn Laboratories for the Biological Mechanisms of Aging Welcome to the 3rd Annual Harvard/Paul F. Glenn Symposium on Aging. Each year, the Paul F. Glenn Laboratories host the Harvard Symposium on Aging with a mission to educate the wider research community about advancements in this fast-paced field and to stimulate collaborative research in this area. We have been fortunate to have many of the leaders in the aging field speak at these symposia. As a result, attendees come not only from the Harvard research community but from across the nation and from overseas for this one day event. We are glad you could join us here today. The reasons for accelerating research molecular biology of aging are clear. First and foremost, the number of aged individuals in developed countries is growing rapidly, which is going to place an unprecedented burden on the families and the economies of those nations. Because chronic illness in the elderly is a major medical cost, enormous savings would be achieved if mortality and morbidity could be compressed within a shorter duration of time at the end of life. A study by the RAND Corporation in 2006 concluded that advances in medicine arising from aging research would be 10-100 times more cost-effective than any other medical breakthrough. Advances in aging research have shown that it is possible to extend the healthy lifespan of laboratory animals through genetic and pharmacological means. Many leaders in the aging field predict that significant strides will be made in understanding how human health and lifespan are regulated, leading to novel medicines to forestall and treat diseases of aging such as diabetes, cancer, Alzheimer’s and heart disease.
    [Show full text]
  • Signature Redacted Certified By: __Signature Redacted
    Genetic Regulation of Cell Extrusion in Caenorhabditis elegans By Vivek Kumar Dwivedi M. Tech. Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi, 2012 Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology June 2019 2019 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Signature of Author: Department of Biology, May 28, 2019 Certified by: __Signature redacted H. Roiert Horvitz Professor of Biology Thesis Supervisor Accepted by: Signature redacted MASSACHUSETS INSTITUTE Amy . eag OF TECHNOLOGY- Professor of Biology Graduate Committee MAY 312 Co-Chair, Biology LIBRARIES ARCHIVES 1 Genetic Regulation of Cell Extrusion in Caenorhabditis elegans by Vivek Kumar Dwivedi Submitted to the MIT Department of Biology on May 28, 2019 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Abstract Programmed elimination of cells occurs during animal development and homeostasis to maintain appropriate cell numbers. One evolutionarily conserved method by which organisms eliminate cells in a programmed manner is by cell- autonomous activation of the caspase-mediated apoptosis pathway, which produces a corpse that is engulfed and degraded by phagocytic cells. Cell elimination can also occur by a different method, called cell extrusion, in which the cell to be eliminated is squeezed out from a layer of cells, such as an epithelium.
    [Show full text]
  • Dr. Paul Janssen Award for Biomedical Research Issues 2015
    Press Contacts: Dr. Paul Janssen Award for Biomedical Research Issues Seema Kumar 2015 Call for Nominations 908-405-1144 (M) [email protected] New Brunswick, N.J. – January 21, 2015 – The Dr. Paul Janssen Award for Diane Pressman Biomedical Research today opens its 2015 call for nominations. This prestigious 908-927-6171 (O) award recognizes individuals whose scientific research has made, or has the [email protected] potential to make, significant contributions toward the improvement of human Frederik Wittock health. Nominations will be accepted until March 15, 2015 at +32 14 60 57 24 (O) www.pauljanssenaward.com for consideration by an independent selection [email protected] committee of world renowned scientists. Beginning in 2015, the cash prize awarded to the scientist or group of scientists receiving the Award will be increased to $200,000. This increase in the monetary award reflects the growing importance of basic biomedical research, and continued recognition by Johnson & Johnson of excellence in the field. The Dr. Paul Janssen Award for Biomedical Research honors Dr. Paul Janssen (1926-2003), who is widely recognized as one of the most productive scientists of the 20th century. Known throughout the scientific community as “Dr. Paul,” Janssen was responsible for breakthrough treatments in disease areas including pain management, psychiatry, infectious disease and gastroenterology, and founded Janssen Pharmaceutica, N.V., a Johnson & Johnson Company. “Innovative science and technology have the power to transform the world,” said Paul Stoffels, M.D., Chief Scientific Officer and Worldwide Chairman, Pharmaceuticals, Johnson & Johnson. “Through the Dr. Paul Janssen Award for Biomedical Research, Johnson & Johnson honors the inspirational legacy of Dr.
    [Show full text]
  • Table of Contents (PDF)
    July 5, 2016 u vol. 113 u no. 27 From the Cover 7308 Finding causality in Big Data E3901 Treating inflammation-driven fibrosis 7403 Interactions between liquid droplets on solids 7667 Role of plant photoreceptors Contents THIS WEEK IN PNAS 7285 In This Issue Cover image: Societies now collect immense amounts of data from both LETTERS (ONLINE ONLY) controlled experiments and natural E3811 Avoid the hard problem: Employment of mental simulation for prediction is observations such as activity on the already a crucial step World Wide Web. Pictured is a Malte Schilling and Holk Cruse visualization of one possible archive of E3812 Consciousness explained or consciousness redefined? data in network form. Such databases Shelley Anne Adamo are analyzed and used for scientific, business, and health purposes. Effective E3813 Insects cannot tell us anything about subjective experience or the origin use of these large databases of of consciousness information, collectively termed Big Brian Key, Robert Arlinghaus, and Howard I. Browman Data, requires identifying the causal E3814 Reply to Adamo, Key et al., and Schilling and Cruse: Crawling around the hard forces behind patterns in the data. Such problem of consciousness an effort was the focus of the Sackler Colin Klein and Andrew B. Barron Colloquium on Drawing Causal Inference from Big Data. See the OPINION—Leading scientists discuss current issues Introduction to the Colloquium papers by Richard M. Shiffrin on pages 7308– 7287 In the wake of Paris Agreement, scientists must embrace new directions
    [Show full text]
  • Cold Spring Harbor Laboratory 2016 Meetings & Courses
    Cold Spring Harbor Laboratory 2016 Meetings & Courses Meetings Gene Expression & Signaling in the Glia in Health & Disease Axon Guidance, Synapse Formation & Regeneration Immune System July 21 - 25 abstracts due May 6 September 20 - 24 abstracts due July 1 Marc Freeman, Kelly Monk Greg Bashaw, Linda Richards, Peter Scheiffele Systems Biology: Global Regulation of April 26 - 30 abstracts due February 5 Gene Expression Diane Mathis, Stephen Nutt, Alexander Rudensky, Art Weiss Genome Engineering: The CRISPR/Cas Revolution August 17 - 20 abstracts due May 27 Mechanisms of Aging March 15 - 19 abstracts due January 8 September 26 - 30 abstracts due July 25 Nuclear Organization & Function Jennifer Doudna, Maria Jasin, Jonathan Weissman Barak Cohen, Christina Leslie, John Stamatoyannopoulos, Sarah Teichmann Vera Gorbunova, Malene Hansen, Scott Pletcher May 3 - 7 abstracts due February 12 Evolutionary Biology of Caenorhabditis & Edith Heard, Martin Hetzer, David Spector Regulatory & Non-Coding RNAs August 23 - 27 abstracts due June 3 Germ Cells October 4 - 8 abstracts due July 15 Other Nematodes The Biology of Genomes Victor Ambros, Elisa Izaurralde, Nicholas Proudfoot Robert Braun, Geraldine Seydoux March 30 - April 2 abstracts due January 15 May 10 - 14 abstracts due February 19 Scott Baird, Marie Delattre, Erik Ragsdale, Adrian Streit Ewan Birney, Michel Georges, Jonathan Pritchard, Molly Przeworski The PI3K-mTOR-PTEN Network in Biological Data Science Neuronal Circuits The Cell Cycle Health & Disease October 25 - 29 abstracts due August 12
    [Show full text]
  • BIOLOGY 639 SCIENCE ONLINE the Unexpected Brains Behind Blood Vessel Growth 641 THIS WEEK in SCIENCE 668 U.K
    4 February 2005 Vol. 307 No. 5710 Pages 629–796 $10 07%.'+%#%+& 2416'+0(70%6+10 37#06+6#6+8' 51(69#4' #/2.+(+%#6+10 %'..$+1.1); %.10+0) /+%41#44#;5 #0#.;5+5 #0#.;5+5 2%4 51.76+105 Finish first with a superior species. 50% faster real-time results with FullVelocity™ QPCR Kits! Our FullVelocity™ master mixes use a novel enzyme species to deliver Superior Performance vs. Taq -Based Reagents FullVelocity™ Taq -Based real-time results faster than conventional reagents. With a simple change Reagent Kits Reagent Kits Enzyme species High-speed Thermus to the thermal profile on your existing real-time PCR system, the archaeal Fast time to results FullVelocity technology provides you high-speed amplification without Enzyme thermostability dUTP incorporation requiring any special equipment or re-optimization. SYBR® Green tolerance Price per reaction $$$ • Fast, economical • Efficient, specific and • Probe and SYBR® results sensitive Green chemistries Need More Information? Give Us A Call: Ask Us About These Great Products: Stratagene USA and Canada Stratagene Europe FullVelocity™ QPCR Master Mix* 600561 Order: (800) 424-5444 x3 Order: 00800-7000-7000 FullVelocity™ QRT-PCR Master Mix* 600562 Technical Services: (800) 894-1304 Technical Services: 00800-7400-7400 FullVelocity™ SYBR® Green QPCR Master Mix 600581 FullVelocity™ SYBR® Green QRT-PCR Master Mix 600582 Stratagene Japan K.K. *U.S. Patent Nos. 6,528,254, 6,548,250, and patents pending. Order: 03-5159-2060 Purchase of these products is accompanied by a license to use them in the Polymerase Chain Reaction (PCR) Technical Services: 03-5159-2070 process in conjunction with a thermal cycler whose use in the automated performance of the PCR process is YYYUVTCVCIGPGEQO covered by the up-front license fee, either by payment to Applied Biosystems or as purchased, i.e., an authorized thermal cycler.
    [Show full text]
  • April 8-11, 2019 the 2019 Franklin Institute Laureates the 2019 Franklin Institute AWARDS CONVOCATION APRIL 8–11, 2019
    april 8-11, 2019 The 2019 Franklin Institute Laureates The 2019 Franklin Institute AWARDS CONVOCATION APRIL 8–11, 2019 Welcome to The Franklin Institute Awards, the range of disciplines. The week culminates in a grand oldest comprehensive science and technology medaling ceremony, befitting the distinction of this awards program in the United States. Each year, the historic awards program. Institute recognizes extraordinary individuals who In this convocation book, you will find a schedule of are shaping our world through their groundbreaking these events and biographies of our 2019 laureates. achievements in science, engineering, and business. We invite you to read about each one and to attend We celebrate them as modern day exemplars of our the events to learn even more. Unless noted otherwise, namesake, Benjamin Franklin, whose impact as a all events are free and open to the public and located scientist, inventor, and statesman remains unmatched in Philadelphia, Pennsylvania. in American history. Along with our laureates, we honor Franklin’s legacy, which has inspired the We hope this year’s remarkable class of laureates Institute’s mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From shedding light on the mechanisms of human Institute Awards Week. memory to sparking a revolution in machine learning, from sounding the alarm about an environmental crisis to making manufacturing greener, from unlocking the mysteries of cancer to developing revolutionary medical technologies, and from making the world III better connected to steering an industry giant with purpose, this year’s Franklin Institute laureates each reflect Ben Franklin’s trailblazing spirit.
    [Show full text]
  • Wen Xue, Ph.D
    Wen Xue, Ph.D. RNA Therapeutics Institute University of Massachusetts Medical School 368 Plantation Street, AS4-2053 Worcester, MA 01605 (774) 455-3783 Fax: (508) 856-6696 [email protected] Lab Home page: http://www.umassmed.edu/xuelab/ Education Ph.D., Stony Brook University, The State University of New York, Stony Brook, NY 2004-2009 Thesis: Tumor suppressor gene networks in liver cancer Advisor: Dr. Scott Lowe M.S., Biochemistry, Nanjing University, China 2002-2004 Thesis: Transcriptional regulation in eukaryotes Advisor: Dr. Jin Wang 1998-2002 B.S., Biochemistry, Nanjing University, China Appointments Assistant Professor, RNA Therapeutics Institute, 2014-present Program of Molecular Medicine, and MCCB University of Massachusetts Medical School, Worcester, MA Postdoctoral Research 2009-2014 Koch Institute, MIT, Cambridge, MA Advisor: Dr. Tyler Jacks Honors and Awards NIH Director’s New Innovator Award 2016-2021 American Cancer Society Research Scholars Grant 2016-2020 The Lung Cancer Research Foundation Scientific Merit Award 2015 Worcester Foundation Award 2015 NCI-K99 Pathway to Independence Award 2012-2017 The Leukemia & Lymphoma Society Career Development Program Award 2011-2012 American Association for Cancer Research (AACR) Pre-doctoral Fellowship 2008-2011 Professional Memberships and Activities Member, American Society of Gene & Cell Therapy (ASGCT) 2018-present Member, American Association for Cancer Research (AACR) 2008-present Member, International Liver Cancer Association (ILCA) 2016-present Consultant, Cystic
    [Show full text]
  • Hox Genes in Arthropod Development and Evolution 373 Henry, Jonathan Q., and Mark Q
    GENETIC REGULATORY NETWORKS in Embryogenesis and Evolution Proceedings of a workshop sponsored by THE CENTER FOR ADVANCED STUDIES IN THE SPACE LIF_ SCIENCES AT THE MBL 11 - 14 June 1997 Marine Biological Laboratory, Woods Hole, Massachusetts Funded by THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION under Cooperative Agreement NCC 2-896 CONTENTS Genetic Regulatory Networks in Embryogenesis and Evolution Cameron, R. Andrew Akam, Michael Introduction ............................. 361 Hox genes in arthropod development and evolution 373 Henry, Jonathan Q., and Mark Q. Martindale Slack, Frank, and Gary Ruvkun Evolution of cleavage programs in relationship to axial Heterochronic genes in development and evolution . 375 specification and body plan evolution ........... 363 Hobert, Oliver, and Gary Ruvkun van Loon, A. E., and J. A. M. van den Biggelaar A common theme for LIM homeobox gene function Changes in cell lineage specification elucidate evolu- across phylogeny? ......................... 377 tionary relations in Spiralia ................... 367 Satoh, Noriyuki Shanldand, Marty, and Ashley E. E. Bruce Mechanisms of specification in ascidian embryos . 381 Axial patterning in the leech: developmental mecha- Published by title only ....................... 384 nisms and evolutionary implications ............ 370 Chairs and speakers ........................ 384 359 GENETIC REGULATORY NETWORKS in Embryogenesis and Evolution Proceedings of a workshop sponsored by THE CENTER FOR ADVANCED STUDIES IN THE SPACE LIFE SCIENCES AT THE MBL 11 - 14 June 1997 Marine Biological Laboratory, Woods Hole, Massachusetts Funded by THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION S_-_o!a_rative Agreement NCC 2-896) Reprinted from The Biological Bulletin, Vol. 195, December 1998 Printed in U.S.A. Reference: Biol. Bull. 195: 361-362. (December, 1998) Introduction The participants in the workshop "Genetic Regulatory of novel developmental processes, by exchange, translo- Networks in Embryogenesis and Evolution" gathered to cation, addition, or subtraction of cis-regulatory modules.
    [Show full text]
  • From the President's Desk
    JANUARY 2007 From the President’s desk: It was wonderful news to hear that GSA member, Andy Fire, together with Craig Mello won this year’s Nobel Prize in Physiology or Medicine for their work on RNAi in C. elegans. Not only does it bring great pleasure to see the deserving achievements of our colleagues recognized with this highest honor, but in addition, their work stands as yet another testimony to the important fundamental discoveries, often unanticipated, that emerge when creative, dedicated, and skillful investigators have the opportunity to explore and to pursue their curiosity. The list of all Nobel recipients in Medicine contains numerous such examples – many for discoveries related to genetics. It is thus all the more disheartening to read reports, such as those of Mandel and Vesell (Science 313:1387, 2006), documenting the precipitous erosion of NIH support for funding of investigator-initiated (R01) projects over the past several years, even as the NIH budget has doubled. To quote Mandel and Vesell, “Although the total number of applications has increased annually since FY 2002, not only success rates, but also total number of grants awarded and total dollars committed persistently decreased.” For example, Mandel and Vesell report that in 1999, there were 8957 submissions of new, unamended, grant applications, of which 1761 were funded at a total of $456 million. In 2005, only 970 awards were made out of 10,605 applications at a total of $351 million. The trend is similar for competing renewals. Although the reasons for this decline are many and complex, current NIH policies that have diverted increasingly larger proportions of NIH funds away from R01’s toward large-scale projects including Center grants, initiatives in nanotechnology, proteomics, and other earmarked projects, of which the Roadmap is part, have certainly contributed to the problem (see Weinberg, Cell 126:9, 2006).
    [Show full text]
  • H. Robert Horvitz
    WORMS, LIFE AND DEATH Nobel Lecture, December 8, 2002 by H. ROBERT HORVITZ Howard Hughes Medical Institute, McGovern Institute for Brain Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachus- etts Ave., Cambridge, MA 02139, U.S.A. I never expected to spend most of my life studying worms. However, when it came time for me to choose an area for my postdoctoral research, I was in- trigued both with the problems of neurobiology and with the approaches of genetics. Having heard that a new “genetic organism” with a remarkably sim- ple nervous system was being explored by Sydney Brenner – the microscopic soil nematode Caenorhabditis elegans – I decided to join Sydney in his efforts. THE CELL LINEAGE After arriving at the Medical Research Council Laboratory of Molecular Biology (the “LMB”) in Cambridge, England, in November, 1974, I began my studies of C. elegans (Figure 1) as a collaboration with John Sulston. John, Figure 1. Caenorhabditis elegans adults. Hermaphrodite above, male below. John Sulston took these photographs, and I drew the diagrams. Bar, 20 microns. From (2). 320 Figur 2. John White. trained as an organic chemist, had become a Staff Scientist in Sydney’s group five years earlier. John’s aim was to use his chemistry background to analyze the neurochemistry of the nematode. By the time I arrived, John had turned his attention to the problem of cell lineage, the pattern of cell divisions and cell fates that occurs as a fertilized egg generates a complex multicellular or- ganism. John could place a newly hatched C. elegans larva on a glass micro- scope slide dabbed with a sample of the bacterium Escherichia coli (nematode food) and, using Nomarski differential interference contrast optics, observe individual cells within the living animal.
    [Show full text]