C. Elegans G1 Cyclin/CDK 4851 Primers MP 164 (5′-CCAAAACAATGCCGCATATTCCGAC-3′) and A

Total Page:16

File Type:pdf, Size:1020Kb

C. Elegans G1 Cyclin/CDK 4851 Primers MP 164 (5′-CCAAAACAATGCCGCATATTCCGAC-3′) and A Development 126, 4849-4860 (1999) 4849 Printed in Great Britain © The Company of Biologists Limited 1999 DEV5301 Regulation of postembryonic G1 cell cycle progression in Caenorhabditis elegans by a cyclin D/CDK-like complex Morgan Park and Michael W. Krause* Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, Maryland 20892-0510, USA *Author for correspondence (e-mail: [email protected]) Accepted 13 August; published on WWW 6 October 1999 SUMMARY In many organisms, initiation and progression through the transgenic animals is sufficient to activate a S-phase G1 phase of the cell cycle requires the activity of G1-specific reporter gene. We observe no embryonic defects associated cyclins (cyclin D and cyclin E) and their associated cyclin- with depletion of either of these two gene products, dependent kinases (CDK2, CDK4, CDK6). We show here suggesting that their essential functions are restricted to that the Caenorhabditis elegans genes cyd-1 and cdk-4, postembryonic development. We propose that the cyd-1 encoding proteins similar to cyclin D and its cognate cyclin- and cdk-4 gene products are an integral part of the dependent kinases, respectively, are necessary for proper developmental control of larval cell proliferation through division of postembryonic blast cells. Animals deficient the regulation of G1 progression. for cyd-1 and/or cdk-4 activity have behavioral and developmental defects that result from the inability of the postembryonic blast cells to escape G1 cell cycle arrest. Key words: Caenorhabditis elegans, Cell cycle, Cyclin D, CDK, cyd- Moreover, ectopic expression of cyd-1 and cdk-4 in 1, cdk-4 INTRODUCTION CDK2, respectively, are responsible for initiating progression from G1 to S phase by phosphorylating cellular substrates. D- The formation of a complex multicellular organism requires type cyclins act as growth factor sensors and regulators of G1 the control of cell proliferation within the context of initiation and progression (Matsushime et al., 1992; Baldin et environmental and developmental signaling. The G1 phase of al., 1993; Sherr, 1993, 1994). Mitogens induce the synthesis of the cell cycle is a key regulatory point that controls cell cycle cyclin D and the assembly of cyclin D with its catalytic CDK decisions and previous studies in several different systems have partners to form an active complex that will promote passage defined the basic machinery involved in the initiation of cell through the restriction point (Matsushime et al., 1991, 1992, cycle entry and progression through the cell cycle (Sherr, 1993, 1994). The formation of the G1 cyclin/CDK complex is the 1994; Hunter and Pines, 1994). During G1, cells are responsive rate-limiting step in early G1 progression (Ohtsubo and to extracellular cues that control proliferation, differentiation, Roberts, 1993; Quelle et al., 1993; Resnitzky et al., 1994). quiescence, senescence and apoptosis (Sherr, 1994). The Once formed, the activity of this complex is also regulated by commitment to cell division is linked to the restriction point CDK inhibitory proteins (p21/27, INK4; Sherr and Roberts, (START) in late G1 (Pardee, 1989). In mammalian cells, 1995), by phosphorylation state (through the action of passage through this regulatory point requires the presence of CAK, CDC25, WEE1; Lew and Kornbluth, 1996), and by mitogenic signaling, but once past this point, the cells no longer degradation via ubiquitin-mediated pathways (King et al., require mitogenic signaling and they are irreversibly 1996; Hoyt, 1997). committed to enter S phase and to complete the cell cycle Although the molecular mechanisms of cell cycle control are (Pardee, 1989; Sherr, 1994, 1996). well understood and evolutionarily conserved, there currently Progression through the cell cycle is controlled by the is a poor understanding of how regulators of the cell cycle are activity of cyclin-dependent kinases (CDKs) in association integrated into the development of a multicellular organism to with a regulatory cyclin subunit (Hunt, 1991; Nigg, 1995). ensure the correct number of cells are generated at the correct Previous studies have shown that a distinct set of cyclin/ CDK place and time. Recently, organisms such as mice, Xenopus and complexes act during the G1 phase to drive cells through Drosophila have been utilized to study cell cycle regulation in START (Dulic et al., 1992; Koff et al., 1992; Xiong et al., the context of animal developmental programs. Caenorhabditis 1992). D-type and E-type cyclins, in association with their elegans is also emerging as an attractive system to address cognate cyclin-dependent kinases, CDK4 (or CDK6) and questions of developmental cell cycle control. The entire 4850 M. Park and M. W. Krause lineage and timing of cell divisions in C. elegans is known, however, we have been unable to confirm SL1 or SL2 trans-splicing both embryonically and postembryonically, providing single- to this site. The coding sequences corresponding to the cyd-1 and cdk- cell resolution to studies of cell division (Sulston and Horvitz, 4 genes have been deposited in Genbank (AF053067 and AF083878, 1977; Sulston et al., 1983). For example, there are 55 respectively). embryonically born blast cell nuclei that can divide during Gene expression constructs larval development in response to developmental cues. All of Genomic sequence corresponding to the putative promoter regions of these divisions can be monitored by direct observation and with cyd-1 and cdk-4 were cloned separately into a GFP expression vector reporter genes or antibodies specifically marking a subset of (pPD 95.67; A. Fire, G. Seydoux, J. Ahnn, and S. Q. Xu, personal these blast cell lineages. This comparatively simple and defined communication). Regions containing non-coding and coding pattern of cell divisions, coupled with the molecular, genetic sequences were amplified from genomic wild-type N2 DNA by and genomic resources, makes C. elegans an ideal system to PCR. cyd-1 was amplified using primers MP135 (5′-GAAGGCTC- study cell cycle regulation. GCATGTCGAGTTG-3′) and MP136 (5′-CGCGGATCCATAGTA- Several genes affecting the initiation and progression of the GGAACGATGCGCAC-3′). cdk-4 was amplified using primers cell cycle during postembryonic development have been MP147 (5′-CGCGGATCCCGAAGGATCTCCATTTTCTAC-3′) and ′ ′ identified in C. elegans. The heterochronic genes define a MP148 (5 -CGCGGATCCCAATTCATACATCCATTCTGTGG-3 ). developmental pathway regulating the timing of many Each reporter gene construct (cyd-1::GFP and cdk-4::GFP) contains 3.3 kb of non-coding sequence upstream of the ATG start and the first postembryonic cell cycles (Ambros and Horvitz, 1984; Euling (cdk-4) or first two (cyd-1) coding exon sequences fused in frame to and Ambros, 1996; Ambros, 1997). Precocious and retarded the green fluorescent protein (GFP). To rescue the cdk-4(gv3) heterochronic mutants accelerate or delay, respectively, the mutation, the cdk-4::GFP construct was modified by inserting the timing of postembryonic divisions. In addition, two negative cdk-4 cDNA, containing a FLAG tag, between the putative cdk-4 regulators of G1 cell cycle progression have been identified. promoter and GFP-encoding sequences. Transgenic animals The cul-1 gene, encoding one of several cullins in C. elegans, containing these reporter or rescuing constructs were generated by is required for cell cycle exit (Kipreos et al., 1996). The cullins germline transformation using a dominant roller marker (pRF4) as a are part of the ubiquitin-mediated degradation pathway and co-transformation marker (Mello and Fire, 1995). For cdk-4(gv3) rescue, the construct was introduced into the szTI balanced strain presumably act to degrade G1 cyclins like the related yeast (S. cerevisiae) gene product CDC53 (Mathias et al., 1996, KM48 (see below) and viable Rollers cloned to select for rescued homozygous cdk-4(gv3) lines. Jackson, 1996). The cki-1 gene product that is related to the CIP/KIP family of cyclin-dependent kinase inhibitors (Hong et Immunoprecipitations al., 1998) encodes a second negative regulator of G1 A HA-tagged CYD-1 expression construct was generated by PCR using progression in C. elegans. Reduction or loss of function for the cyd-1 EST yk118d3 as template and primers MP155 (5′-CGC- either cul-1 or cki-1 activity results in hyperproliferation of the TCTAGAATGCACTTTGAGTCGTCGTCGGC-3′) and MP156 (5′- postembryonic blast cells. GCGTCTAGAAGCGTAATCTGGAACATCGTATGGGTATAAAGT- In this study, we show that two C. elegans proteins similar CTTGAAGATCTTC-3′). The HA-tag is encoded in primer MP156 and to the G1-specific cyclin, cyclin D, and its cognate cyclin- is added to the carboxy-terminus of CYD-1. A FLAG-tagged CDK-4/6 construct was generated by PCR using cdk-4 EST yk492e2 as template dependent kinases, CDK4 and CDK6, are responsible for ′ initiating postembryonic cell division. By analogy to other and primers MP161 (5 -CGCGGATCCACCATGTGCGAGAATCT- TTATGGAGAGGAGTAC-3′) and MP158 (5′-GCGTCTAGACTTGT- systems, these two factors may function in a complex and we CATCGTCGTCCTTGTAGTCCTTGTTGAAGTTGATTTGC-3′). The show by co-immunoprecipitation that they can interact when FLAG tag is encoded in primer MP158 and is added to the carboxy- co-expressed in insect cells. Depletion of these factors in a cdk- terminus of CDK-4/6. These tagged constructs were cloned into the 4 deletion mutant or by RNA-mediated interference (RNAi) for Fastbac expression vector in the BAC-to-BAC system (Gibco-BRL). cyd-1 or cdk-4, leads to phenotypic defects that are restricted Sf9 cells were infected with Baculovirus extracts and cells harvested to postembryonic development. Our results suggest that cyd-1 48 hours postinfection. Immunoprecipitation used anti-HA antibody and cdk-4 are critical in C. elegans for the developmental (Santa Cruz Biotechnology) and anti-FLAG (Sigma) antibodies. control of G1 cell cycle progression in postembryonic blast Immunoprecipitates were separated by SDS-PAGE using a 4-20% cells. gradient gel (Novex) and analyzed by Western blot using the ABC detection system (Vector labs).
Recommended publications
  • USA Education Ph.D., Biology, Massachusetts Institute of Tech
    Victor R. Ambros, Ph.D. Silverman Professor of Natural Sciences Program in Molecular Medicine University of Massachusetts Medical School373 Plantation Street, Suite 306 Worcester, MA 01605 (508) 856-6380 [email protected] Personal Born: Hanover, NH, USA on December 1, 1953 Citizenship: USA Education Ph.D., Biology, Massachusetts Institute of Technology, Cambridge, MA 1976-1979 Thesis Title: The protein covalently linked to the 5' end of poliovirus RNA Advisor: Dr. David Baltimore B.S., Biology, Massachusetts Institute of Technology, Cambridge, MA 1971-1975 Professional Appointments Silverman Professor of Natural Sciences 2009-present Co-Director, RNA Therapeutics Institute 2009-2016 Professor, Program in Molecular Medicine 2008-present University of Massachusetts Medical School, Worcester, MA Professor of Genetics, Dartmouth Medical School 2001-2007 Professor, Biological Sciences, Dartmouth Medical School 1996-2001 Associate Professor, Biological Sciences, Dartmouth Medical School 1992-1996 Associate Professor, Department of Cellular and Development Biology, 1988-1992 Harvard University, Cambridge, MA Assistant Professor, Department of Cellular and Development Biology, 1985-1988 Harvard University, Cambridge, MA Postdoctoral Research 1979-1985 Supervisor: Dr. H. Robert Horvitz Massachusetts Institute of Technology, Cambridge, MA Graduate Research 1976-1979 Supervisor: Dr. David Baltimore Massachusetts Institute of Technology, Cambridge, MA Research Assistant 1975-1976 Supervisor: Dr. David Baltimore Center for Cancer Research,
    [Show full text]
  • The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression
    International Journal of Molecular Sciences Review The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression Tingting Zou and Zhenghong Lin * School of Life Sciences, Chongqing University, Chongqing 401331, China; [email protected] * Correspondence: [email protected] Abstract: The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs. Keywords: cell cycle regulation; CDKs; cyclins; CKIs; UPS; E3 ubiquitin ligases; Deubiquitinases (DUBs) Citation: Zou, T.; Lin, Z. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. 1. Introduction Int. J. Mol. Sci. 2021, 22, 5754. https://doi.org/10.3390/ijms22115754 The cell cycle is a ubiquitous, complex, and highly regulated process that is involved in the sequential events during which a cell duplicates its genetic materials, grows, and di- Academic Editors: Kwang-Hyun Bae vides into two daughter cells.
    [Show full text]
  • Profile of Gary Ruvkun
    PROFILE Profile of Gary Ruvkun wash in the faint glow of a fluo- Brush with Molecular Biology rescent lamp, a pair of serpentine The story of Ruvkun’s metamorphosis Anematode worms lie on a Petri from a keen undergraduate into a leading plate, their see-through bodies light in his field of study begins at Har- magnified 100-fold by one of several vard University, where he enrolled in microscopes arrayed in a darkened bay in a Ph.D. program in 1976 upon returning National Academy of Sciences member to the United States. Like many other Gary Ruvkun’s laboratory at Massachu- scientific institutions across the world in setts General Hospital. While one of the the mid-1970s, Harvard was astir with the worms wiggles its way around the plate, promise of recombinant DNA technol- the other shows no signs of life, ogy, and Ruvkun wasted no time em- its midsection ruptured and its innards bracing its tools. “My undergraduate strewn asunder. A filter slides into place, education had not prepared me at all for and the worms are bathed in a dull recombinant DNA, but I immersed my- green haze. The wiggling worm has a bea- self into its culture at Harvard, much of con of nerve cells in its head, the ganglia which was James Watson’s creation from lit up by a genetic trick that has rescued a decade earlier,” Ruvkun says. Propelled the worm from death; its neighbor wears Gary Ruvkun. by a desire to be a part of the culture of no such beacon. The worms were deprived basic molecular biology, all while per- of a tiny RNA molecule, called a micro- forming science with the potential to im- RNA, which helps shepherd them through not 5-year-old children.
    [Show full text]
  • 2008 Harvard / Paul F
    The 2008 Harvard / Paul F. Glenn Symposium on Aging June 23, 2008 Paul F. Glenn Laboratories for the Biological Mechanisms of Aging Welcome to the 3rd Annual Harvard/Paul F. Glenn Symposium on Aging. Each year, the Paul F. Glenn Laboratories host the Harvard Symposium on Aging with a mission to educate the wider research community about advancements in this fast-paced field and to stimulate collaborative research in this area. We have been fortunate to have many of the leaders in the aging field speak at these symposia. As a result, attendees come not only from the Harvard research community but from across the nation and from overseas for this one day event. We are glad you could join us here today. The reasons for accelerating research molecular biology of aging are clear. First and foremost, the number of aged individuals in developed countries is growing rapidly, which is going to place an unprecedented burden on the families and the economies of those nations. Because chronic illness in the elderly is a major medical cost, enormous savings would be achieved if mortality and morbidity could be compressed within a shorter duration of time at the end of life. A study by the RAND Corporation in 2006 concluded that advances in medicine arising from aging research would be 10-100 times more cost-effective than any other medical breakthrough. Advances in aging research have shown that it is possible to extend the healthy lifespan of laboratory animals through genetic and pharmacological means. Many leaders in the aging field predict that significant strides will be made in understanding how human health and lifespan are regulated, leading to novel medicines to forestall and treat diseases of aging such as diabetes, cancer, Alzheimer’s and heart disease.
    [Show full text]
  • Signature Redacted Certified By: __Signature Redacted
    Genetic Regulation of Cell Extrusion in Caenorhabditis elegans By Vivek Kumar Dwivedi M. Tech. Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi, 2012 Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology June 2019 2019 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Signature of Author: Department of Biology, May 28, 2019 Certified by: __Signature redacted H. Roiert Horvitz Professor of Biology Thesis Supervisor Accepted by: Signature redacted MASSACHUSETS INSTITUTE Amy . eag OF TECHNOLOGY- Professor of Biology Graduate Committee MAY 312 Co-Chair, Biology LIBRARIES ARCHIVES 1 Genetic Regulation of Cell Extrusion in Caenorhabditis elegans by Vivek Kumar Dwivedi Submitted to the MIT Department of Biology on May 28, 2019 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Abstract Programmed elimination of cells occurs during animal development and homeostasis to maintain appropriate cell numbers. One evolutionarily conserved method by which organisms eliminate cells in a programmed manner is by cell- autonomous activation of the caspase-mediated apoptosis pathway, which produces a corpse that is engulfed and degraded by phagocytic cells. Cell elimination can also occur by a different method, called cell extrusion, in which the cell to be eliminated is squeezed out from a layer of cells, such as an epithelium.
    [Show full text]
  • Mitogen Requirement for Cell Cycle Progression in the Absence of Pocket Protein Activity
    ARTICLE Mitogen requirement for cell cycle progression in the absence of pocket protein activity Floris Foijer,1 Rob M.F. Wolthuis,1 Valerie Doodeman,1 Rene´ H. Medema,2 and Hein te Riele1,* 1 Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands 2 Present address: Experimental Oncology, University Medical Center, Stratenum 2.103, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands *Correspondence: [email protected] Summary Primary mouse embryonic fibroblasts lacking expression of all three retinoblastoma protein family members (TKO MEFs) have lost the G1 restriction point. However, in the absence of mitogens these cells become highly sensitive to apoptosis. CIP1 KIP1 Here, we show that TKO MEFs that survive serum depletion pass G1 but completely arrest in G2. p21 and p27 inhibit Cyclin A-Cdk2 activity and sequester Cyclin B1-Cdk1 in inactive complexes in the nucleus. This response is alleviated by mi- togen restimulation or inactivation of p53. Thus, our results disclose a cell cycle arrest mechanism in G2 that restricts the proliferative capacity of mitogen-deprived cells that have lost the G1 restriction point. The involvement of p53 provides a ra- tionale for the synergism between loss of Rb and p53 in tumorigenesis. Introduction Despite the critical role of pRb in controlling the G1 restriction point, pRb knockout primary mouse embryonic fibroblasts Proliferation of cells in culture is dependent on the presence of (MEFs) do not proliferate in the absence of mitogens but still ar- mitogenic stimuli. In the absence of mitogens, cells fail to prog- rest (Herrera et al., 1996; Almasan et al., 1995).
    [Show full text]
  • Runx3 Plays a Critical Role in Restriction-Point and Defense Against Cellular Transformation
    OPEN Oncogene (2017) 36, 6884–6894 www.nature.com/onc ORIGINAL ARTICLE Runx3 plays a critical role in restriction-point and defense against cellular transformation X-Z Chi1, J-W Lee1, Y-S Lee1, IY Park2,YIto3 and S-C Bae1 The restriction (R)-point decision is fundamental to normal differentiation and the G1–S transition, and the decision-making machinery is perturbed in nearly all cancer cells. The mechanisms underlying the cellular context–dependent R-point decision remain poorly understood. We found that the R-point was dysregulated in Runx3−/−mouse embryonic fibroblasts (MEFs), which formed tumors in nude mice. Ectopic expression of Runx3 restored the R-point and abolished the tumorigenicity of Runx3−/−MEFs and K-Ras–activated Runx3−/−MEFs (Runx3−/−;K-RasG12D/+). During the R-point, Runx3 transiently formed a complex with pRb and Brd2 and induced Cdkn1a (p21Waf1/Cip1/Sdi1; p21), a key regulator of the R-point transition. Cyclin D–CDK4/6 promoted dissociation of the pRb–Runx3–Brd2 complex, thus turning off p21 expression. However, cells harboring oncogenic K-Ras maintained the pRb– Runx3–Brd2 complex and p21 expression even after introduction of Cyclin D1. Thus, Runx3 plays a critical role in R-point regulation and defense against cellular transformation. Oncogene (2017) 36, 6884–6894; doi:10.1038/onc.2017.290; published online 28 August 2017 INTRODUCTION general, the p53 pathway is inactivated during MEF immortaliza- The restriction (R)-point is a critical event in which a mammalian tion, but the immortalized MEFs are not tumorigenic, which cell makes the decision in response to mitogen stimulation.
    [Show full text]
  • DNA Damage Triggers a Prolonged P53- Dependent G^ Arrest Ana Long-Term Induction of Cipl in Normal Human Fibroblasts
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press DNA damage triggers a prolonged p53- dependent G^ arrest ana long-term induction of Cipl in normal human fibroblasts Aldo Di Leonardo/'^'^ Steven P. Linke/'^'^ Kris Clarkin/ and Geoffrey M. Wahl** ^Gene Expression Lab, The Salk Institute, La Jolla, California 92037 USA; ^Department of Cell and Developmental Biology, University of Palermo, Italy; ^Department of Biology, University of California, San Diego, La Jolla, California 92037 USA The tumor suppressor p53 is a cell cycle checkpoint protein that contributes to the preservation of genetic stability by mediating either a G^ arrest or apoptosis in response to DNA damage. Recent reports suggest that p53 causes growth arrest through transcriptional activation of the cyclin-dependent kinase (Cdk)-inhibitor Cipl. Here, we characterize the p53-dependent Gj arrest in several normal human diploid fibroblast (NDF) strains and p53-deficient cell lines treated with 0.1-6 Gy gamma radiation. DNA damage and cell cycle progression analyses showed that NDF entered a prolonged arrest state resembling senescence, even at low doses of radiation. This contrasts with the view that p53 ensures genetic stability by inducing a transient arrest to enable repair of DNA damage, as reported for some myeloid leukemia lines. Gamma radiation administered in early to mid-, but not late, G^ induced the arrest, suggesting that the p53 checkpoint is only active in Gj until cells commit to enter S phase at the Gi restriction point. A log-linear plot of the fraction of irradiated GQ cells able to enter S phase as a function of dose is consistent with single-hit kinetics.
    [Show full text]
  • Loss of P21 Disrupts P14arf-Induced G1 Cell Cycle Arrest but Augments P14arf-Induced Apoptosis in Human Carcinoma Cells
    Oncogene (2005) 24, 4114–4128 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Loss of p21 disrupts p14ARF-induced G1 cell cycle arrest but augments p14ARF-induced apoptosis in human carcinoma cells Philipp G Hemmati1,3, Guillaume Normand1,3, Berlinda Verdoodt1, Clarissa von Haefen1, Anne Hasenja¨ ger1, DilekGu¨ ner1, Jana Wendt1, Bernd Do¨ rken1,2 and Peter T Daniel*,1,2 1Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charite´, Campus Berlin-Buch, Berlin-Buch, Germany; 2Max-Delbru¨ck-Center for Molecular Medicine, Berlin-Buch, Germany The human INK4a locus encodes two structurally p16INK4a and p14ARF (termed p19ARF in the mouse), latter unrelated tumor suppressor proteins, p16INK4a and p14ARF of which is transcribed in an Alternative Reading Frame (p19ARF in the mouse), which are frequently inactivated in from a separate exon 1b (Duro et al., 1995; Mao et al., human cancer. Both the proapoptotic and cell cycle- 1995; Quelle et al., 1995; Stone et al., 1995). P14ARF is regulatory functions of p14ARF were initially proposed to usually expressed at low levels, but rapid upregulation be strictly dependent on a functional p53/mdm-2 tumor of p14ARF is triggered by various stimuli, that is, suppressor pathway. However, a number of recent reports the expression of cellular or viral oncogenes including have implicated p53-independent mechanisms in the E2F-1, E1A, c-myc, ras, and v-abl (de Stanchina et al., regulation of cell cycle arrest and apoptosis induction by 1998; Palmero et al., 1998; Radfar et al., 1998; Zindy p14ARF. Here, we show that the G1 cell cycle arrest et al., 1998).
    [Show full text]
  • Dr. Paul Janssen Award for Biomedical Research Issues 2015
    Press Contacts: Dr. Paul Janssen Award for Biomedical Research Issues Seema Kumar 2015 Call for Nominations 908-405-1144 (M) [email protected] New Brunswick, N.J. – January 21, 2015 – The Dr. Paul Janssen Award for Diane Pressman Biomedical Research today opens its 2015 call for nominations. This prestigious 908-927-6171 (O) award recognizes individuals whose scientific research has made, or has the [email protected] potential to make, significant contributions toward the improvement of human Frederik Wittock health. Nominations will be accepted until March 15, 2015 at +32 14 60 57 24 (O) www.pauljanssenaward.com for consideration by an independent selection [email protected] committee of world renowned scientists. Beginning in 2015, the cash prize awarded to the scientist or group of scientists receiving the Award will be increased to $200,000. This increase in the monetary award reflects the growing importance of basic biomedical research, and continued recognition by Johnson & Johnson of excellence in the field. The Dr. Paul Janssen Award for Biomedical Research honors Dr. Paul Janssen (1926-2003), who is widely recognized as one of the most productive scientists of the 20th century. Known throughout the scientific community as “Dr. Paul,” Janssen was responsible for breakthrough treatments in disease areas including pain management, psychiatry, infectious disease and gastroenterology, and founded Janssen Pharmaceutica, N.V., a Johnson & Johnson Company. “Innovative science and technology have the power to transform the world,” said Paul Stoffels, M.D., Chief Scientific Officer and Worldwide Chairman, Pharmaceuticals, Johnson & Johnson. “Through the Dr. Paul Janssen Award for Biomedical Research, Johnson & Johnson honors the inspirational legacy of Dr.
    [Show full text]
  • Cyclin D Activates the Rb Tumor Suppressor by Mono-Phosphorylation
    RESEARCH ARTICLE elifesciences.org Cyclin D activates the Rb tumor suppressor by mono-phosphorylation Anil M Narasimha1†, Manuel Kaulich1†, Gary S Shapiro1†‡, Yoon J Choi2,3, Piotr Sicinski2,3, Steven F Dowdy1* 1Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States; 2Department of Genetics, Harvard Medical School, Boston, United States; 3Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Abstract The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early 1G phase by cyclin D:Cdk4/6. Mono- phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono- *For correspondence: sdowdy@ phosphorylated
    [Show full text]
  • Restriction Point Regulation at the Crossroads Between Quiescence and Cell Proliferation Betheney R
    REVIEW ARTICLE Restriction point regulation at the crossroads between quiescence and cell proliferation Betheney R. Pennycook1,2 and Alexis R. Barr1,2 1 Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK 2 MRC London Institute of Medical Sciences, Imperial College London, London, UK Correspondence The coordination of cell proliferation with reversible cell cycle exit into quies- A. R. Barr, Institute of Clinical Sciences, cence is crucial for the development of multicellular organisms and for tissue Faculty of Medicine, Imperial College homeostasis in the adult. The decision between quiescence and proliferation London, Du Cane Road, London W12 0NN, occurs at the restriction point, which is widely thought to be located in the UK Tel: +44 02083838235 G1 phase of the cell cycle, when cells integrate accumulated extracellular and E-mail: [email protected] intracellular signals to drive this binary cellular decision. On the molecular level, decision-making is exerted through the activation of cyclin-dependent (Received 4 May 2020, revised 8 June kinases (CDKs). CDKs phosphorylate the retinoblastoma (Rb) transcriptional 2020, accepted 10 June 2020, available repressor to regulate the expression of cell cycle genes. Recently, the classical online 7 July 2020) view of restriction point regulation has been challenged. Here, we review the latest findings on the activation of CDKs, Rb phosphorylation and the nature doi:10.1002/1873-3468.13867 and position of the restriction point within the cell cycle. Edited by Angel Nebreda Keywords: cell cycle; cyclin; cyclin-dependent kinase; proliferation; quiescence; restriction point; single-cell imaging Tight control of cell proliferation is vital for normal factors.
    [Show full text]