A Ground Magnetic Survey of Kimberlite Intrusives in Elliott County, Kentucky

Total Page:16

File Type:pdf, Size:1020Kb

A Ground Magnetic Survey of Kimberlite Intrusives in Elliott County, Kentucky Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington A Ground Magnetic Survey of Kimberlite Intrusives in Elliott County, Kentucky John D. Calandra Thesis Series 2 Series XII, 2000 Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington A Ground Magnetic Survey of Kimberlite Intrusives in Elliott County, Kentucky John D. Calandra On the cover: Photomicrographs of olivine phenoc- rysts: (top) a stressed first-generation olivine pheno- cryst and (bottom) a late-stage olivine phenocryst. Thesis Series 2 Series XII, 2000 i UNIVERSITY OF KENTUCKY Computer and Laboratory Services Section: Charles T. Wethington Jr., President Steven Cordiviola, Head Fitzgerald Bramwell, Vice President for Research and Richard E. Sergeant, Geologist IV Graduate Studies Joseph B. Dixon, Information Technology Manager I Jack Supplee, Director, Administrative Affairs, Research James M. McElhone, Information Systems Technical and Graduate Studies Support Specialist IV Henry E. Francis, Scientist II KENTUCKY GEOLOGICAL SURVEY ADVISORY Karen Cisler, Scientist I BOARD Jason S. Backus, Research Analyst Henry M. Morgan, Chair, Utica Steven R. Mock, Research Analyst Ron D. Gilkerson, Vice Chair, Lexington Tracy Sizemore, Research Analyst William W. Bowdy, Fort Thomas Steve Cawood, Frankfort GEOLOGICAL DIVISION Hugh B. Gabbard, Winchester Coal and Minerals Section: Kenneth Gibson, Madisonville Donald R. Chesnut Jr., Head Mark E. Gormley, Versailles Garland R. Dever Jr., Geologist V Rosanne Kruzich, Louisville Cortland F. Eble, Geologist V W.A. Mossbarger, Lexington Gerald A. Weisenfluh, Geologist V Jacqueline Swigart, Louisville David A. Williams, Geologist V, Henderson office John F. Tate, Bonnyman Stephen F. Greb, Geologist IV David A. Zegeer, Lexington William M. Andrews Jr., Geologist II Ralph N. Thomas, Emeritus Member, Owensboro Ernest E. Thacker, Geologist I George H. Warren Jr., Emeritus Member, Owensboro Geologic Mapping and Hydrocarbon Resources Section: KENTUCKY GEOLOGICAL SURVEY James A. Drahovzal, Head Warren H. Anderson, Geologist IV James C. Cobb, State Geologist and Director David C. Harris, Geologist IV John D. Kiefer, Assistant State Geologist Brandon C. Nuttall, Geologist IV Donald C. Haney, State Geologist Emeritus Thomas N. Sparks, Geologist III ADMINISTRATIVE DIVISION Douglas C. Curl, Geologist II Personnel and Finance Section: John B. Hickman, Geologist II James L. Hamilton, Administrative Staff Officer II Steven L. Martin, Geologist II Jackie Silvers, Administrative Staff Officer I Jason A. Patton, Geologist II Clerical Section: Mark F. Thompson, Geologist I Amanda Long, Staff Support Associate II Anna E. Watson, Geologist I Jennifer Talley, Staff Support Associate I Xin-Yue Yang, Post-Doctoral Scholar Juanita G. Smith, Office Assistant, Henderson office R. Shawn Duncan, Geological Technician Michael P. Solis, Geological Technician Office of Communications and Technology Transfer: Carol L. Ruthven, Manager Water Resources Section: Margaret Luther Smath, Geologic Editor III James S. Dinger, Head Douglas W. Reynolds Jr., Geologist II, Communications Daniel I. Carey, Hydrologist V Coordinator for the Kentucky Board of Registration for R. Stephen Fisher, Hydrogeologist V Professional Geologists David R. Wunsch, Hydrogeologist V Terry D. Hounshell, Chief Cartographic Illustrator James C. Currens, Hydrogeologist IV Michael L. Murphy, Graphic Design Technician John F. Stickney, Hydrogeologist IV Collie Rulo, Graphic Design Technician Alex W. Fogle, Hydrologist III Shirley Davis Dawson, Staff Support Associate II Robert E. Andrews, Hydrogeologist II E. Glynn Beck, Hydrogeologist II, Henderson office Well Sample and Core Library: Dennis H. Cumbie, Hydrogeologist II Patrick J. Gooding, Manager Carlos M. Galcerán Jr., Hydrogeologist II Robert R. Daniel, Senior Laboratory Technician C. Douglas R. Graham, Hydrogeologist II Office of Geologic Information: Randall L. Paylor, Hydrogeologist II Bart Davidson, Manager Ron Counts, Geological Technician, Henderson office Richard A. Smath, Geologist II, Earth Science Information Gregory L. Secrist, Geological Technician Center Coordinator Steven E. Webb, Geological Technician William A. Briscoe III, Publication Sales Supervisor Geologic Hazards: Roger S. Banks, Account Clerk I Edward W. Woolery, Geologist IV Luanne Davis, Staff Support Associate II Theola L. Evans, Staff Support Associate I ii Contents Abstract 1 Acknowledgments 1 Introduction 2 Purpose 2 Location 2 Geologic Setting 2 Previous Work 5 Paleozoic Tectonic History and Principal Structures 8 Basement Complex 8 Lineament Survey 9 Field Study 9 Air Photos 13 LANDSAT Imagery 13 Results 13 Discussion 13 Petrography 19 Point-Count Analysis 19 Petrographic Descriptions 18 Laboratory Magnetic Measurements 25 Ground Magnetic Mapping Procedures 27 Collection of Data 27 Preparation of the Total Magnetic Intensity Map 29 Modeling and Interpretations 29 Preparation of Residual Total Magnetic Intensity Maps 29 The K1 Anomaly: Modeling 32 The K1 Anomaly: Interpretations 36 The K2 Anomaly 37 The K3 Anomaly 39 The K4 Anomaly 40 Summary of the K Area 42 The G1 Anomaly 43 The G2 Anomaly 48 The G3 Anomaly 50 The P1 Anomaly 52 The P2 Anomaly 53 Summary of the G and P Areas 55 Relation of Intrusives to Regional Structure and Theory of Emplacement 55 Age of Intrusives and Tectonic Framework During Time of Emplacement 65 Conclusions 68 References Cited 71 Appendix A: Positions of Total Magnetic Intensity Values 75 Appendix B: Computer Programs Used in Study 85 Map 1: Total Magnetic Intensity Map 90 Map 2: Index for Anomaly Maps and Distribution of Intrusive Models 91 iii FIGURES 1. Generalized map of study area 3 2. Generalized stratigraphic column for eastern Kentucky 4 3. Residual aeromagnetic intensity map 6 4. Map showing principal structural features of east-central and northeastern Kentucky 7 5. Gravity map for eastern Kentucky 10 6. Field sites with joint orientations 11 7. Contour diagram of equal area net showing the orientations of 75 joints in study area 12 8. Limits of area studied in aerial photos, and major structural elements within area 14 9. Lineament traces from air photos 15 10. Rose and cartesian diagrams for air photo lineament populations 16 11. Lineament traces from satellite imagery 17 12. Rose and cartesian diagrams for LANDSAT lineament populations 18 13. Location of survey lines and roads used to collect regional data 28 14. Interpolated position of total magnetic intensity contours used to define regional gradient in study area 30 15. Residual total intensity aeromagnetic map of Elliott County 31 16. Graphic illustration of removal of regional gradient 32 17. K1 anomaly: observed residual intensity map 32 18. K1 anomaly: computed residual intensity map with elevation corrections 33 19. K1 anomaly: observed profile and computed profile with elevation corrections along GG' 34 20. K1 anomaly: model position, topographic expression, and computed profile with elevation corrections along GG' 35 21. K1 anomaly: computed residual intensity map without elevation corrections 36 22. K1 anomaly: observed profile and computed profile without elevation corrections along GG' 37 23. K2 anomaly: observed residual intensity map 38 24. K2 anomaly: computed residual intensity map 39 25. K2 anomaly: observed and computed profiles along JJ' 40 26. K2 anomaly: model position, topographic expression, and computed profile along JJ' 41 27. K3 anomaly: observed residual intensity map 42 28. K3 anomaly: computed residual intensity map 42 29. K3 anomaly: observed and computed profiles along GG' 43 30. K3 anomaly: model position, topographic expression, and computed profile along GG' 44 31. K4 anomaly: observed residual intensity map 45 32. K4 anomaly: computed residual intensity map 45 33. K4 anomaly: observed and computed profiles along EE' 46 34. K4 anomaly: model position, topographic expression, and computed profile along EE' 47 35. G1 anomaly: observed residual intensity map 48 36. G1 anomaly: computed residual intensity map for dike model 49 37. G1 anomaly: observed and computed profile for dike model along GG' 50 iv FIGURES (Continued) 38. G1 anomaly: model position, topographic expression, and computed profile for dike model along HH' 51 39. G1 anomaly: computed residual intensity map for pipe model 52 40. G1 anomaly: observed and computed profile for pipe model along GG' 53 41. G2 anomaly: observed residual intensity map 54 42. G2 anomaly: computed residual intensity map 55 43. G2 anomaly: observed and computed profiles along JJ' 56 44. G2 anomaly: model position, topographic expression, and computed profile along JJ' 57 45. G3 anomaly: observed residual intensity map 58 46. G3 anomaly: computed residual intensity map 59 47. G3 anomaly: observed and computed profiles along AA' 60 48. G3 anomaly: observed and computed profiles along BB' 61 49. G3 anomaly: model position, topographic expression, and computed profile along AA' 62 50. G3 anomaly: model position, topographic expression, and computed profile along BB' 63 51. P1 anomaly: observed residual intensity map 64 52. P2 anomaly: computed residual intensity map 65 53. P1 anomaly: observed and computed profiles along GG' 66 54. P1 anomaly: model position, topographic expression, and computed profile along GG' 67 55. P2 anomaly: observed residual intensity map 68 56. P2 anomaly: computed residual intensity map 68 57. P2 anomaly: observed and computed profiles along JJ' 69 58. P2 anomaly: model position,
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • The World of Pink Diamonds and Identifying Them
    GEMOLOGY GEMOLOGY as to what dealers can do to spot them using standard, geologists from Ashton Joint Venture found certain indicator The World of Pink Diamonds inexpensive instruments. The commercial signifcance of minerals (such as ilmenite, chromite, chrome diopside, the various types will also be touched on. and pyrope garnet) in stream-gravel concentrates which indicated the presence of diamond-bearing host rocks. and Identifying Them Impact of Auction Sales Lamproites are special ultrapotassic magnesium-rich In the late 1980s, the public perception surrounding fancy- mantle-derived volcanic rocks with low CaO, Al2O3, Na2O colored diamonds began to change when the 0.95-carat and high K2O. Leucite, glass, K-richterite, K-feldspar and Cr- By Branko Deljanin, Dr Adolf Peretti, ‘Hancock Red’ from Brazil was sold for almost $1 million per spinel are unique to lamproites and are not associated with and Matthias Alessandri carat at a Christie’s auction. This stone was studied by one kimberlites. The diamonds in lamproites are considered to be of the authors (Dr. Adolf Peretti) at that time. Since then, xenocrysts and derived from parts of the lithospheric mantle Dr. Peretti has documented the extreme impact this one that lies above the regions of lamproite genesis. Kimberlites sale has had on subsequent prices and the corresponding are also magmatic rocks but have a different composition recognition of fancy diamonds as a desirable asset class. The and could contain non-Argyle origin pink diamonds. demand for rare colors increased and the media began to play a more active role in showcasing new and previously Impact of Mining Activities unknown such stones.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions
    minerals Article Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusions Ivan F. Chayka 1,2,*, Alexander V. Sobolev 3,4, Andrey E. Izokh 1,5, Valentina G. Batanova 3, Stepan P. Krasheninnikov 4 , Maria V. Chervyakovskaya 6, Alkiviadis Kontonikas-Charos 7, Anton V. Kutyrev 8 , Boris M. Lobastov 9 and Vasiliy S. Chervyakovskiy 6 1 V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; [email protected] 2 Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432 Chernogolovka, Russia 3 Institut des Sciences de la Terre (ISTerre), Université de Grenoble Alpes, 38041 Grenoble, France; [email protected] (A.V.S.); [email protected] (V.G.B.) 4 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia; [email protected] 5 Department of Geology and Geophysics, Novosibirsk State University, 630090 Novosibirsk, Russia 6 Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, 620016 Yekaterinburg, Russia; [email protected] (M.V.C.); [email protected] (V.S.C.) 7 School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia; [email protected] 8 Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, 683000 Petropavlovsk-Kamchatsky, Russia; [email protected] 9 Institute of Mining, Geology and Geotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-985-799-4936 Received: 17 February 2020; Accepted: 6 April 2020; Published: 9 April 2020 Abstract: Mesozoic (125–135 Ma) cratonic low-Ti lamproites from the northern part of the Aldan Shield do not conform to typical classification schemes of ultrapotassic anorogenic rocks.
    [Show full text]
  • Cr3+ in Phyllosilicates
    Mineral Spectroscopy: A Tribute to Roger G. Bums © The Geochemical Society, Special Publication No.5, ]996 Editors: M. D. Dyar, C. McCammon and M. W. Schaefer 3 Cr + in phyllosilicates: Influence of the nature of coordinating ligands and their next cationic neighbors on the crystal field parameters I 2 2 A. N. PLATONOV , K. LANGER , M. ANDRUT .3, G. CALAS4 'Institute of Geochemistry, Mineralogy and Ore Formation, Academy of Science of Ukraine, 252680 Kiev, Ukraine 2Institute of Mineralogy and Crystallography, Technical University, D-10623 Berlin, Germany 3GeoForschungszentrum Potsdam, D-14473 Potsdam, Deutschland "Laboratoire de Mineralogie et de Cristallographie, Universite de Paris 6 et 7, F-7525l Paris, France 3 Abstract- The electronic absorption spectra of Cr + -bearing clinochlore (I, kammererite), amesite (II), muscovite (III, fuchsite), dickite (IV), and montmorillonite (V, volkonskite) analysed by electron microprobe were obtained on single crystals. Microscope-spectrometric techniques and polarized radiation in the spectral range 10000-38000 cm " (I, II, III) or (on fine grained material) diffuse reflectance spectrometry in the spectral range 8000-50000 cm-I (IV, V) were used. The ligand field theoretical evaluation of the spectra showed the following: (i) The fl.o = 10Dq = f(1/R5) relation, wherein fl.o is the octahedral crystal field parameter and R the mean cation ligand distance, is valid within each series of layer silicates containing octahedral Cr3+ either in a trioctahedral layer (I, II and phlogopite) or in a dioctahedral layer (III, IV, V). Between the two functions, fl.o.trioct = f(1lR~ioct) and fl.o.di=t = f(1/R~ioct), there exists an energy difference of about 2200 em -I.
    [Show full text]
  • A PROPOSED NEW CLASSIFICATION for GEM-QUALITY GARNETS by Carol M
    A PROPOSED NEW CLASSIFICATION FOR GEM-QUALITY GARNETS By Carol M. Stockton and D. Vincent Manson Existing methods of classifying garnets ver the past two decades, the discovery of new types have proved to be inadequate to deal with 0 of garnets in East Africa has led to a realization that some new types of garnets discovered garnet classification systems based on the early work of recently. A new classification system based gemologists such as B. W. Anderson are no longer entirely on the chemical analysis of more than 500 satisfactory. This article proposes a new system of classifi- gem garnets is proposed for use in gemology. cation, derived from chemical data on a large collection of Chemical, optical, and physical data for a transparent gem-quality garnets, that requires only representative collection of 202 transparent gemquality stones are summarized. Eight determination of refractive index, color, and spectral fea- garnet species arc defined-gross~~lar, tures to classify a given garnet. Thus, the jeweler- andradite, pyrope, pyrope-almandine, gemologist familiar with standard gem-testing techniques almandine~almandine-spessartine, can readily and correctly characterize virtually any garnet spessartine, and pyrope-spessartine-and he or she may encounter, and place it within one of eight methods of identification are described. rigorously defined gem species: grossular, andradite, Properties that can be determined with pyrope, pyrope-almandine, almandine, almandine-spes- standard gem-testing equipment sartine, spessartine, and pyrope-spessartine. Several varie- (specifically, refractive index, color, and tal categories (e.g., tsavorite, chrome pyrope, rhodolite, absorption spectrum) can be used to and malaia*) are also defined.
    [Show full text]
  • Chondritic Magnesium Isotopic Composition of the Terrestrial Mantle: a Case Study of Peridotite Xenoliths from the North China Craton
    Earth and Planetary Science Letters 288 (2009) 475–482 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Chondritic magnesium isotopic composition of the terrestrial mantle: A case study of peridotite xenoliths from the North China craton Wei Yang a,b,⁎, Fang-Zhen Teng b, Hong-Fu Zhang a a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 10029, China b Isotope Laboratory, Department of Geosciences and Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, USA article info abstract Article history: In order to further investigate inter-mineral Mg isotope fractionation at mantle temperatures and to better Received 29 June 2009 constrain the Mg isotopic composition of the terrestrial mantle, we have studied a set of well-characterized Received in revised form 29 September 2009 mantle peridotite xenoliths from Sanyitang and Beiyan, North China craton. The Sanyitang and Beiyan Accepted 8 October 2009 peridotites, which have diverse origins with different mineralogy, chemical composition and degree of Available online 8 November 2009 partial melting and metasomatism, display a small variation in Mg isotopic composition, with δ26Mg varying Editor: R.W. Carlson from −0.48 to −0.12 and an average value of −0.29±0.19 (2SD, n=21) in olivines, from −0.27 to −0.10 and an average value of −0.21±0.09 (2SD, n=12) in orthopyroxenes and from −0.35 to −0.08 and an Keywords: average value of −0.22±0.14 (2SD, n=15) in clinopyroxenes.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • DIAMONDS and MANTLE SOURCE ROCKS in the WYOMING CRATON with a DISCUSSION of OTHER U.S. OCCURRENCES by W
    WYOMING STATE GEOLOGICAL SURVEY Gary B. Glass, State Geologist DIAMONDS AND MANTLE SOURCE ROCKS IN THE WYOMING CRATON WITH A DISCUSSION OF OTHER U.S. OCCURRENCES by W. Dan Hause} Report of Investigations No. 53 1998 Laramie, Wyoming WYOMING STATE GEOLOGICAL SURVEY Lance Cook, State Geologist GEOLOGICAL SURVEY BOARD Ex Officio Jim Geringer, Governor Randi S. Martinsen, University of Wyoming Don J. Likwartz, Oil and Gas Supervisor Lance Cook, State Geologist Appointed Nancy M. Doelger, Casper Charles M. Love, Rock Springs Ronald A. Baugh, Casper Stephen L. Payne, Casper John E. Trummel, Gillette Computer Services Unit Publications Section Susan McClendon - Manager Richard W. Jones - Editor Jaime R. Bogaard - Editorial Assistant Geologic Sections Lisa J. Alexander - Sales Manager James c. Case, Staff Geologist - Geologic Hazards Fred H . Porter, III - Cartographer Rodney H . De Bruin, Staff Geologist - Oil and Gas Phyllis A. Ranz - Cartographer Ray E. Harris, Staff Geologist - Industrial Minerals Joseph M. Huss - GIS Specialist and Uranium W. Dan Hausel, Senior Economic Geologist - Metals and Precious Stones Supportive Services Unit Robert M. Lyman, Staff Geologist - Coal Susanne G. Bruhnke - Office Manager Alan J. Ver Ploeg, Senior Staff Geologist - Geologic Joan E. Binder - Administrative Assistant Mapping This and other publications available from: Wyoming State Geological Survey P.O. Box 3008 Laramie, WY 82071-3008 Phone: (307) 766-2286 Fax: (307) 766-2605 Email: [email protected] Web Page: http://wsgsweb.uwyo.edu People with disabilities who require an alternative form of communication in order to use this publication should contact the Editor, Wyoming State Geological Survey at (307) 766-2286. TTY Relay operator 1(800) 877-9975.
    [Show full text]
  • On the Mechanism of Exfoliation of 'Vermiculite'
    Clay Minerals, (2013) 48, 563–582 OPEN ACCESS On the mechanism of exfoliation of ‘Vermiculite’ 1,2, 3,4 3 S. HILLIER *, E. M. M. MARWA AND C. M. RICE 1 The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK, 2 Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden, 3 Department of Geology and Petroleum Geology, University of Aberdeen, AB24 3UE, UK, and 4 Sokoine University of Agriculture, Department of Soil Science, P. O. Box 3008, Morogoro, Tanzania (Received 20 May 2013; revised 27 July 2013; Editor: George Christidis) ABSTRACT: Six samples of ‘Vermiculite’ have been studied to investigate the mechanism of its well known but poorly understood property to exfoliate. The samples were analysed quantitatively by XRD to determine their precise mineralogical composition. Electron microprobe methods, including elemental mapping of native potassium and of caesium (introduced by cation exchange) were used to examine variation in the chemical composition of the particles. Most of the samples examined show heterogeneous mineralogical compositions which occur as distinct zones within the volume of individual particles, presenting a mosaic texture. Exfoliation is related to this mosaic distribution of the different mineral phases within the particles. Lateral phase boundaries between vermiculite and mica layers, or vermiculite and chlorite layers are postulated to prevent or impede the escape of gas from a particle, resulting in exfoliation when the pressure exceeds the interlayer bonding forces that hold the layers together. This mechanism provides a common explanation for the exfoliation of ‘Vermiculite’ by thermal methods or by treatment with H2O2.
    [Show full text]
  • The Opticat Absorption Spectra of the Garnets Atmandine.Pyrope, Pyrope and Spessartine and Some Structural Interpretation5 of Mi
    THEOPTICAT ABSORPTION SPECTRA OF THEGARNETS ATMANDINE.PYROPE,PYROPE AND SPESSARTINEAND SOME STRUCTURALINTERPRETATION5 OF MINERATOGICAT SIGNIFICANCE P. G. MANNING* AssrRAcr The optical absorption spectr-aof the garnets almandine-pyrope, pyrope and spessartine are reported from the near infrared to the near ultraviolet (l,oori cm-t). The spectra show a three-band-systemin the infrared (4,500cm-r, 6,000"---s0,000 cmjr and 2,g00 that has been attributed to g-coordinate "*-t; Fe(II). A numbei (b-z) ot fairly sharp bands in the visible and ultraviolet regions have been attributed to spin-iorbidden bands of either Fe(II) or octahedrally-bonled Fe(III). some Mn(II) bands have also been observedand assigned. No bands characteristic of tetrahedrally-bonded transition metal ions were observed. Absorption bands characteristic of o.trh"dtulty-bonded Fe(II) were not observed either. A.few very weak absorption bands have not been assignedbecause absorptions due to other transition metal ions, e.g., Ti(III), Mn(III) or cilttt) cannot be identified with any certainty. INrnooucrroN useful information on the cation valence state and site symmetry can be obtained from an analysis of the d,-d,spectra of minerals that contain transition metals. The study of the d,-d,spectra of garnets is of interest because these silicates can contain Fe, Mn and ri as a principal constituent or as an impurity, and also because these cations can be distributed between orthorhombic (8-coordinate), octahedral and tetrahedral sites. This paper, therefore, reports an analysis of the optical spectra of almandine-pyrope, pyrope and spessartine crystals.
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]