Saturn's Icy Satellites Investigated by Cassini-VIMS. IV. Daytime
Saturn's icy satellites investigated by Cassini - VIMS. IV. Daytime temperature maps Gianrico Filacchionea,∗, Emiliano D'Aversaa, Fabrizio Capaccionia, Roger N. Clarkb, Dale P. Cruikshankc, Mauro Ciarnielloa, Priscilla Cerronia, Giancarlo Belluccia, Robert H. Brownd, Bonnie J. Burattie, Phillip D. Nicholsonf, Ralf Jaumanng, Thomas B. McCordh, Christophe Sotine, Katrin Stephang, Cristina M. Dalle Orec aINAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, Area di Ricerca di Tor Vergata, via del Fosso del Cavaliere, 100, 00133, Rome, Italy bPSI Planetary Science Institute, Tucson, AZ, USA cNASA Ames Research Center, Moffett Field, CA 94035-1000, USA dLunar and Planetary Laboratory and Steward Observatory, University of Arizona, Tucson, AZ 85721, USA eJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Groove Drive, Pasadena, CA 91109, USA fCornell University, Astronomy Department, 418 Space Sciences Building, Ithaca, NY 14853, USA gInstitute for Planetary Exploration, DLR, Rutherfordstaße 2, 12489, Berlin, Germany hThe Bear Fight Institute, Winthrop, WA 98862, USA Abstract The spectral position of the 3.6 µm continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites' surfaces. Laboratory measurements indicate that the position of the 3.6 µm peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 µm at T=123 K to about 3.55 µm at T=88 K. A similar method was already applied to VIMS Saturn's rings mosaics to retrieve ring particles temperature (Filacchione et al., 2014).
[Show full text]