Final KISS ISM Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles)
Entropy 2015, 17, 6200-6212; doi:10.3390/e17096200 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Concept Paper Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles) Michael A. Persinger Biomolecular Sciences and Behavioural Neuroscience Programs, Laurentian University, Sudbury, ON P3E 2C6, Canada; E-Mail: [email protected] Academic Editor: Kevin H. Knuth Received: 15 July 2015 / Accepted: 28 August 2015 / Published: 7 September 2015 Abstract: The ~1.5 × 10−20 J which is considered a universal quantity and is associated with the movement of protons in water also relates to the ratio of the magnetic moment of a proton divided by its unit charge, multiplied by viscosity and applied over the O-H distance. There is quantitative evidence that thixotropy, the “spontaneous” increased viscosity in water when undisturbed, originates from the transformation of virtual particles or vacuum oscillations to real states through conversion of Casimir-magnetic energies that involve the frequency of the neutral hydrogen line and the upper bound threshold value for intergalactic magnetic fields. The results indicate that ½ of a single electron orbit is real (particle) and the other ½ is virtual (wave). The matter equivalent per s for virtual-to-real states for electrons in 1 mL of water with a neutral pH is consistent with the numbers of protons (H+) and the measured range of molecules in the coherent domains for both width and duration of growth and is similar to widths of intergalactic dust grains from which planets and stars may condense. The de Broglie momentum for the lower boundary of the width of coherent domains multiplied by the fine structure velocity of an electron is concurrent with the quantum when one proton is being removed from another and when the upper boundary of the rest mass of a photon is transformed by the product of velocities for putative “entanglement” and light. -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
100 Closest Stars Designation R.A
100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79, -
Theory of Space Magnetic Sail Some Common Mistakes and Electrostatic Magsail
1 Article MagSail after Cath for J 10 1 6 06 AIAA -2006 -8148 Theory of Space Magnetic Sail Some Common Mistakes and Electrostatic MagSail * Alexander Bolonkin C&R, 1310 Avenue R, #F -6, Brooklyn, NY 11229, USA T/F 718 -339 -4563, [email protected], http://Bolonki n.narod.ru Abstract The first reports on the “Space Magnetic Sail” concept appeared more 30 years ago. During the period since some hundreds of research and scientific works have been published, including hundreds of research report by professors at major famous universities. The author herein shows that all these works related to Space Magnetic Sail concept are technically incorrect because their authors did not take into consideration that solar wind impinging a MagSail magnetic field creates a particle m agnetic field opposed to the MagSail field. In the incorrect works, the particle magnetic field is hundreds times stronger than a MagSail magnetic field. That means all the laborious and costly computations in revealed in such technology discussions are us eless: the impractical findings on sail thrust (drag), time of flight within the Solar System and speed of interstellar trips are essentially worthless working data! The author reveals the correct equations for any estimated performance of a Magnetic Sail as well as a new type of Magnetic Sail (without a matter ring). Key words: magnetic sail, theory of MagSail, space magnetic sail, Electrostatic MagSail *Presented to 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference , 6 - 9 Nov 2006 National Convention Centre, Canberra, Australia. Introduction The idea of utilizing the magnetic field to aggregate matter in space, harnessing a drag from solar wind or receiving a thrust from an Earth - charged particle beam is old. -
Origins of Life: Transition from Geochemistry to Biogeochemistry
December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times. -
The Denver Observer July 2018
The Denver JULY 2018 OBSERVER The globular cluster, Messier 19, one of this month’s targets in “July Skies,” in a Hubble Space Telescope image. Credit: NASA, ESA, STScI and I. King (Univer- sity of California – Berkeley) JULY SKIES by Zachary Singer The Solar System ’scopes towards the planets when they’re Sky Calendar The big news for July is that Mars comes highest in the sky on a given night, to get the 6 Last-Quarter Moon to opposition on the 27th, meaning that it sharpest image—but Mars is worth viewing 12 New Moon will be at its highest in the south on that date naked-eye when it’s rising. Surprised? The 19 First-Quarter Moon around 1 AM, and also more or less at its red (well, orange) planet appears even redder 27 Full Moon largest as seen from Earth. Now, don’t let that when rising, making for much deeper color. fool you—Mars is already very good as July It’s a guilty pleasure on an aesthetic level, if begins, showing a disk 21” across, which is not a scientific one. If you want to indulge better than we got two years ago, and only yourself, Mars rises around 10:30 PM at In the Observer slightly smaller than the 24” expected at the beginning of July, an hour earlier mid- the end of the month. (Observations in my month, and about 8:20 PM at month’s end. President’s Message . .2 6-inch reflector at the end of June showed an Meanwhile, Mercury is an evening Society Directory. -
9.0 BACKGROUND “What Do I Do First?” You Need to Research a Card (Thruster Or 9.1 DESIGNER’S NOTES Robonaut) with a Low Fuel Consumption
9.2 TIPS FOR INEXPERIENCED ROCKET CADETS 9.0 BACKGROUND “What do I do first?” You need to research a card (thruster or 9.1 DESIGNER’S NOTES robonaut) with a low fuel consumption. A “1” is great, a “4” The original concept for this game was a “Lords of the Sierra Madre” in is marginal. The PRC player*** can consider an dash to space. With mines, ranches, smelters, and rail lines all purchased and claim Hellas Basin on Mars, using just his crew card. He controlled by different players, who have to negotiate between them- needs 19 fuel steps (6 WT) along the red route to do this. selves to expand. But space does not work this way. “What does my rocket need?” Your rocket needs 4 things: Suppose you have a smelter on one main-belt asteroid, powered by a • A card with a thruster triangle (2.4D) to act as a thruster. • A card with an ISRU rating, if its mission is to prospect. beam-station on another asteroid, and you discover platinum on a third • A refinery, if its mission is to build a factory. nearby asteroid. Unfortunately for long-term operations, next year these • Enough fuel to get to the destination. asteroids will be separated by 2 to 6 AUs.* Furthermore, main belt Decide between a small rocket able to make multiple claims, Hohmann transfers are about 2 years long, with optimal transfer opportu- or a big rocket including a refinery and robonaut able to nities about 7 years apart. Jerry Pournelle in his book “A Step Farther industrialize the first successful claim. -
Planned Yet Uncontrolled Re-Entries of the Cluster-Ii Spacecraft
PLANNED YET UNCONTROLLED RE-ENTRIES OF THE CLUSTER-II SPACECRAFT Stijn Lemmens(1), Klaus Merz(1), Quirin Funke(1) , Benoit Bonvoisin(2), Stefan Löhle(3), Henrik Simon(1) (1) European Space Agency, Space Debris Office, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email:[email protected] (2) European Space Agency, Materials & Processes Section, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands (3) Universität Stuttgart, Institut für Raumfahrtsysteme, Pfaffenwaldring 29, 70569 Stuttgart, Germany ABSTRACT investigate the physical connection between the Sun and Earth. Flying in a tetrahedral formation, the four After an in-depth mission analysis review the European spacecraft collect detailed data on small-scale changes Space Agency’s (ESA) four Cluster II spacecraft in near-Earth space and the interaction between the performed manoeuvres during 2015 aimed at ensuring a charged particles of the solar wind and Earth's re-entry for all of them between 2024 and 2027. This atmosphere. In order to explore the magnetosphere was done to contain any debris from the re-entry event Cluster II spacecraft occupy HEOs with initial near- to southern latitudes and hence minimise the risk for polar with orbital period of 57 hours at a perigee altitude people on ground, which was enabled by the relative of 19 000 km and apogee altitude of 119 000 km. The stability of the orbit under third body perturbations. four spacecraft have a cylindrical shape completed by Small differences in the highly eccentric orbits of the four long flagpole antennas. The diameter of the four spacecraft will lead to various different spacecraft is 2.9 m with a height of 1.3 m. -
E-Sail for Fast Interplanetary Travel. M
Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8056.pdf E-SAIL FOR FAST INTERPLANETARY TRAVEL. M. Aru1, P. Janhunen2, 1University of Tartu, Estonia, 2Finnish Meteorological Institute, Finland Introduction: Propulsion is a significant factor for areas of scientific research and new types of missions our access to the Solar System and the time con- could be imagined and created, improving our unders- sumption of the missions. We propose to use the elect- tanding of the Solar System. ric solar wind sail (E-sail), which can provide remar- Manned presence on Mars. A spacecraft equipped kable low thrust propulsion without needing propellant with a large E-sail, that provides 1 N of thrust at 1 au [1, 2]. from Sun, can travel from Earth to the asteroid belt in a The E-sail is a propellantless propulsion concept year. One such spacecraft can bring back three tonnes that uses centrifugally stretched, charged tethers to of water in three years, and repeat the journey multiple extract momentum from the solar wind to produce times within its estimated lifetime of at least ten years thrust. Over periods of months, this small but conti- [9, 12]. The water can be converted to synthetic cryo- nuous thrust can accelerate the spacecraft to great genic rocket fuel in orbital fuelling stations where speeds of approximately 20 to 30 au/year. For examp- manned vehicles travelling between Earth and Mars le, distances of 100 au could be reached in <10 years, can be fuelled. This dramatically reduces the overall which is groundbreaking [1]. mission fuel ratio at launch, and opens up possibilities The principles of operation: A full-scale E-sail for affordable continuous manned presence on Mars includes up to 100 thin, many kilometers long tethers, [13]. -
Mscthesis Joseangelgutier ... Humada.Pdf
Targeting a Mars science orbit from Earth using Dual Chemical-Electric Propulsion and Ballistic Capture Jose Angel Gutierrez Ahumada Delft University of Technology TARGETING A MARS SCIENCE ORBIT FROM EARTH USING DUAL CHEMICAL-ELECTRIC PROPULSION AND BALLISTIC CAPTURE by Jose Angel Gutierrez Ahumada MSc Thesis in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at the Delft University of Technology, to be defended publicly on Wednesday May 8, 2019. Supervisor: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Dr. Ryan Russell, The University of Texas at Austin Thesis committee: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Prof. dr. ir. Pieter N.A.M. Visser, TU Delft ir. Ron Noomen, TU Delft Dr. Angelo Cervone, TU Delft This thesis is confidential and cannot be made public until December 31, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover picture adapted from https://steemitimages.com/p/2gs...QbQvi EXECUTIVE SUMMARY Ballistic capture is a relatively novel concept in interplanetary mission design with the potential to make Mars and other targets in the Solar System more accessible. A complete end-to-end interplanetary mission from an Earth-bound orbit to a stable science orbit around Mars (in this case, an areostationary orbit) has been conducted using this concept. Sets of initial conditions leading to ballistic capture are generated for different epochs. The influence of the dynamical model on the capture is also explored briefly. Specific capture trajectories are then selected based on a study of their stabilization into an areostationary orbit. -
Deuterium – Tritium Pulse Propulsion with Hydrogen As Propellant and the Entire Space-Craft As a Gigavolt Capacitor for Ignition
Deuterium – Tritium pulse propulsion with hydrogen as propellant and the entire space-craft as a gigavolt capacitor for ignition. By F. Winterberg University of Nevada, Reno Abstract A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus. 1. Introduction The idea to use the 80% of the neutron energy released in the DT fusion reaction for nuclear micro-bomb rocket propulsion, by surrounding the micro-explosion with a thick layer of liquid hydrogen heated up to 105 K thereby becoming part of the exhaust, was first proposed by the author in 1971 [1]. Unlike the Orion pusher plate concept, the fire ball of the fully ionized hydrogen plasma can here be reflected by a magnetic mirror. The 80% of the energy released into 14MeV neutrons cannot be reflected by a magnetic mirror for thermonuclear micro-bomb propulsion. This was the reason why for the Project Daedalus interstellar probe study of the British Interplanetary Society [2], the neutron poor deuterium-helium 3 (DHe3) reaction was chosen. -
IAF Space Propulsion Symposium 2019
IAF Space Propulsion Symposium 2019 Held at the 70th International Astronautical Congress (IAC 2019) Washington, DC, USA 21 -25 October 2019 Volume 1 of 2 ISBN: 978-1-7138-1491-7 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2019) by International Astronautical Federation All rights reserved. Printed with permission by Curran Associates, Inc. (2020) For permission requests, please contact International Astronautical Federation at the address below. International Astronautical Federation 100 Avenue de Suffren 75015 Paris France Phone: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 www.iafastro.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 PROPULSION SYSTEM (1) BLUE WHALE 1: A NEW DESIGN APPROACH FOR TURBOPUMPS AND FEED SYSTEM ELEMENTS ON SOUTH KOREAN MICRO LAUNCHERS ............................................................................ 1 Dongyoon Shin KEYNOTE: PROMETHEUS: PRECURSOR OF LOW-COST ROCKET ENGINE ......................................... 2 Jérôme Breteau ASSESSMENT OF MON-25/MMH PROPELLANT SYSTEM FOR DEEP-SPACE ENGINES ...................... 3 Huu Trinh 60 YEARS DLR LAMPOLDSHAUSEN – THE EUROPEAN RESEARCH AND TEST SITE FOR CHEMICAL SPACE PROPULSION SYSTEMS ....................................................................................... 9 Anja Frank, Marius Wilhelm, Stefan Schlechtriem FIRING TESTS OF LE-9 DEVELOPMENT ENGINE FOR H3 LAUNCH VEHICLE ................................... 24 Takenori Maeda, Takashi Tamura, Tadaoki Onga, Teiu Kobayashi, Koichi Okita DEVELOPMENT STATUS OF BOOSTER STAGE LIQUID ROCKET ENGINE OF KSLV-II PROGRAM .......................................................................................................................................................