Compostable Shrink Wrap for Grocery Produce

Total Page:16

File Type:pdf, Size:1020Kb

Compostable Shrink Wrap for Grocery Produce Compostable fruit and vegetable wrap could replace the polyethene plastic wrap used in many grocery stores | Photo source Fikri Rasyid on Unsplash Innovation > Retail > Compostable shrink wrap for grocery produce COMPOSTABLE SHRINK WRAP FOR GROCERY PRODUCE RETAIL The bioplastic could replace traditional single-use shrink wrap used on fruits and vegetables Spotted: Australian independent grocer Drake’s Supermarkets partnered with Adelaide-based wholesaler IG Fresh to create a compostable fruit and vegetable wrap. The supermarket chain wanted to stop using the polyethene plastic wrap frequently used on individually sold fruits and vegetables. While there are many biodegradable and compostable packaging options now available, the challenge in this project lay in making the new material usable for shrink wrapping. The compostable wrap took 12 months to develop with IG Fresh working in partnership with BioBag World Australia. The new material is made of a plant-based resin called Mater-Bi and, as well as being 100 per cent industrially compostable, can also be disposed of in-home and garden compost and recycling bins. The team behind its development sees it as a direct replacement for a wide range of single-use plastics. Countries including South Africa and Qatar have already expressed interest in the heat-shrunk bioplastic. Distribution plans include expanding into the United States and other countries. Development of the compostable wrap is focusing on a non-shrink version that could replace traditional cling films. Other recent innovations in composting spotted by Springwise include a compost-powered bench warmer and a garden building made entirely of cork. 15th October 2019 Email: [email protected] Website: biobagworld.com.au Takeaway: Fully compostable materials are becoming more valued as the general public begins to better understand the important differences between biodegradable and compostable. Innovations in material sciences are helping to reduce pollution and increase supply-chain sustainability across a wide range of industries. Businesses as diverse as construction and fashion are beginning to make more use of composting and compostable bio products, helping increase carbon neutrality across processes and areas of work..
Recommended publications
  • Shrink Wrap Packaging
    Shrink Wrap Packaging Versatile Shrink Wrap Solutions pacmachinery.com Shrink Packaging Basics Shrink packaging encapsulates a product with- in a tightly adhering layer of film. The process may Clamco 6800CS Side Sealer be accomplished by hand, or by using automatic or Intermittent motion, automatic side seal shrink wrapper semi-automatic packaging equipment. Creating a that offers exceptional return on investment. strong seal in the film is the first step. To achieve this, a hot knife or hot wire is pressed against the film to weld the seal together. The seal process has three variables: time, temperature, and pressure. Each may be adjusted to suit different film types. Once sealed in a film envelope, the package is passed through a heated shrink tunnel. When heated, the film softens and expands, and as the film cools it shrinks tight. The package exits the tunnel wrapped in a taught, secure, attractive film. There are several films from which you may Clamco 6700GLX Automatic L-Bar Sealer choose. Polyethylene is often used for bulk packaging; Outstanding speed, throughput and performance. Sealer Polyolefin is common in retail applications where allows for fast setup, alignment, and product transfer. crystal clarity is important. Polyvinyl Chloride (PVC) can be used as a pre-formed sleeve that is placed around a package and shrinks to conform. Ideal for bundling multiple parts in one secure package, shrink wrapping enhances visual appeal, maintains quality, and protects against tampering. Specifications 6700GLX 6800CS Speed (up to) 40 pkg/min 70 pkg/min Seal length (side) 18” 19.75” Seal length (front) 23” unlimited Maximum film width 23” 23.5” Maximum product height 7.5” 7.85” Sleve Wrappers Automatic Shrink Systems 7002ASW Automatic Sleeve Wrapper With ever-increasing production demands, Clamco This versatile automatic, sleeve wrapper-bundler can be used for meets the need with a family of automatic, high-speed, wrapping a wide range of products, from trays to cartons or bottles.
    [Show full text]
  • Extrusion Foaming of Bioplastics for Lightweight Structure in Food Packaging
    EXTRUSION FOAMING OF BIOPLASTICS FOR LIGHTWEIGHT STRUCTURE IN FOOD PACKAGING A thesis submitted for the degree of Doctor of Philosophy by Sitthi Duangphet School of Engineering and Design Brunel University December 2012 i Abstract This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams.
    [Show full text]
  • The Benchmark for Banknote Packaging in the High-Speed World
    NotaPack®10 The Benchmark for Banknote Packaging in the High-Speed World www.gi-de.com/notapack10 2 NotaPack® 10 3 Concentrated packaging power NotaPack 10 is the leading banknote PHENOMENAL SECURITY MODULAR, COMPACT, FLEXIBLE FULLY AUTOMATIC – INCREASED PRODUCTIVITY – packaging system worldwide for cash Three main factors drive a high level With a high level of product modularity FULLY INTEGRATED INCREASED EFFICIENCY of security: First, intelligent features and optimum flexibility as a result of The G+D High-Speed World is character- NotaPack 10 packages up to 10 bundles centers and banknote printing works, that safeguard the unpackaged bank- over 30 different modules, NotaPack 10 ized by the perfect integration of every of 500 or 1,000 banknotes per minute – engineered in particular for the de- note bundle right up until it is fully can fulfill all key customer requirements. single element, so it is no surprise that quickly, reliably, and to a consistently manding requirements of the industry. shrink-wrapped. These include optical It also offers integration of up to five NotaPack 10 is designed for perfect high level of quality. The system’s energy It is the flawless packaging solution bundle inspection and advanced access BPS systems, and an extremely compact alignment and compatibility with BPS consumption is very low in comparison protection facilitated by continuous design that is suitable for very confined systems and G+D software. Thus, the to other systems. These considerations for the BPS M3, M5, M7, and X9 conveyor covers with locks and log file spaces (taking up floor space of just ideally alligned end-to-end process make the NotaPack 10 a highly efficient, High-Speed Systems, simultaneously writing (p.
    [Show full text]
  • Shrink Wrap Outer Packaging
    GREEN FEATURES Fact Sheet Shrink Wrap Outer Packaging Introduction interference, our manufacturing Life Technologies is committed facility in Warrington, UK, has been to designing products with the shrink wrapping our kits (Figure 1). environment in mind—it’s one more step toward a smaller footprint. By This shrink wrap consists of linear removing the polyolefin shrink wrap low density polyethylene (LLDPE). Green Benefits from some of our products, we can This practice used 950 kg of LLDPE • Less use of non-renewable resources eliminate the material consumption shrink wrap film annually. Due to • Less waste disposal associated with the manufacture of the limited disposal alternatives this plastic and reduce the amount available for this particular material, of waste going to landfills and we presume most, if not all, of this incinerators. This fact sheet provides shrink wrap is scrapped as waste the documentation behind these and not recycled. To minimize the environmental claims. environmental impact of the film, we have replaced it with a small tamper- Product Description proof seal (Figure 2) that fits over the To help ensure products arrive kit container closure tab and can be intact and without any unintended recycled with the kit box. Figure 1. Before: packaged in shrink wrap Figure 2. After: packaged with a simple tamper-proof seal Green Features Reduced Consumption of Non-renewable Resources Based on Lifecycle Inventory (LCI) Data from Plastics Europe’s Eco-profile programme1,2, we estimate that by eliminating the use of 950 kg
    [Show full text]
  • Recyclability in a View
    Recyclability in a View Make the most informed labelling and packaging decision for greater sustainability. Here is an overview of different labelling technologies, the recyclability of various packaging materials, and the global trend in plastic packaging to help you make the right choice. Avery Dennison ClearIntent™ portfolio contains hundreds of products that help reduce material consumption and landfill waste. Benefits of PS labels versus other labelling technologies + No backing liner waste + Easiest separation due to small adhesion zone − Limited material options, lower quality look & feel − Hotmelt contaminant Wrap-around + No backing liner waste + Perforations can be added to provide manual sorting + Container lightweighting / recycled content color Pressure Sensitive variation Labels − 360 coverage impacts optical sorting process − Traditional PETG and PVC sleeves do not separate + CleanFlake™ solution enhances the Shrink Sleeve through PET recycling process (sink / float) recyclability of PET containers by enabling a clean separation duing + No backing liner waste the recycling process − Limited to paper face - can disintegrate and contaminate recycling wash water + Materials from renewable resources − Not proven through plastic recycling process available for facestocks and liners (only glass) Wet Glue + Bio-sourced, compostable, biodegradable materials readily + No backing liner waste available + Single polymer plastic makes recycling easier (container and label are PP) + Liner and matrix recycling programs − Limited availability
    [Show full text]
  • Impacts of a Ban Or Restrictions in Sale of Items in the EU's Single Use Plastics Directive
    SOCIAL RESEARCH NUMBER: 32/2020 PUBLICATION DATE: 19/05/2020 Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. © Crown Copyright Digital ISBN 978-1-80038-424-8 Title: Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Author(s): George Cole, Resource Futures Carla Worth, Resource Futures Katie Powell, Resource Futures Sam Reeve, Resource Futures Susie Stevenson, Miller Research (UK) Nick Morgan, Miller Research (UK) Howard Walker, Bridge Economics Full Research Report: Cole, G; Worth, C; Powell, K; Reeve, S; Stevenson, S; Morgan, N; Walker, H (2019). Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive. Cardiff: Welsh Government, GSR report number 32/2020 Available at: https://gov.wales/impacts-ban-or-restrictions-sale-items-eus-single- use-plastics-directive Views expressed in this report are those of the researcher and not necessarily those of the Welsh Government For further information please contact: Isabella Malet-Lambert Knowledge and Analytical Services Welsh Government Cathays Park Cardiff CF10 3NQ 03000 628250 [email protected] Table of contents List of tables ..........................................................................................................................
    [Show full text]
  • 1610 8 Shashoua Icomcc 2017
    ICOM-CC 18th Triennial Conference Sustainable future alternatives 2017 Copenhagen to petroleum-based polymeric SCIENTIFIC RESEARCH conservation materials YVONNE SHASHOUA* INTRODUCTION National Museum of Denmark Kongens Lyngby, Denmark [email protected] Conservation treatments often employ petroleum-based plastic materials KATJA JANKOVA ATANASOVA as packaging, adhesives and coatings that are synthesised from non- Technical University of Denmark Kongens Lyngby, Denmark renewable crude oil, a resource at risk of exhaustion within the next [email protected] 100 years. The Going Green conference held at the British Museum in CLAIRE CURRAN ICA Art Conservation April 2009 concluded that conservators are under increasing pressure to Cleveland OH, USA [email protected] review their practices in light of international environmental targets and *Author for correspondence the rising costs of fossil fuels. Biopolymers are considered sustainable either because they are synthesised from renewable sources or because they biodegrade to CO2 and H2O in soil and water after use. The range and KEYWORDS: sustainable, biopolymer, bioplastic quality of bioplastics have increased dramatically since 2006 and, today, polyethylene, polyester, soya, humic acid polyethylenes, polyesters, polyurethanes and polyvinyl alcohols can be fully synthesised from biomass, although their commercial availability ABSTRACT is more limited in Europe than in the USA and South America. While The research described here is the first study extensive research has been conducted into the rates and mechanism of on the use of sustainable, plant-based biopoly- degradation of bioplastics on disposal (Rani et al. 2012), few projects have mers in conservation practice. Two applications of biopolymers to conservation were investi- focused on their chemical and physical properties during use and none gated – in commercial bioplastics as substi- have addressed the application of bioplastics to conservation practice.
    [Show full text]
  • Operating, Field Maintenance, and Parts Manual Model 998 Metric CE Thank You for Choosing Shrinkfast Products
    Operating, Field Maintenance, and Parts Manual Model 998 Metric CE Thank you for choosing Shrinkfast products. Please visit us on the web at www.shrinkfast998.com for our latest product information and updates. Customer Service Issues: Before returning any Shrinkfast product, please call: (603)863-7719 Email at www.shrinkfasttools.com SAVE THIS MANUAL FOR FUTURE REFERENCE TABLE OF CONTENTS GENERAL SAFETY PRECAUTIONS & CE SAFETY CERTIFICATION .....................pages 2-4 REGULATOR OPERATION & MAINTENANCE ............................................................ pages 5-8 STARTING THE HEAT TOOL ............................................................................................ page 8 REGULATOR MAINTENANCE & SAFETY FEATURES ......................................... pages 9-10 EXCESS FLOW DEVICE .................................................................................................... page 9 CHOOSING THE CORRECT PROPANE TANK ....................................................... pages 11-12 TANK PRESSURE, TEMPERATURE & OPERATION ............................................ pages 13-14 VENTILATION REQUIREMENTS .................................................................................. page 15 GENERAL INFORMATION ON SHRINK FILM & SHRINK BAGS ...................... pages 16-17 SHRINK WRAPPING TECHNIQUES (PALLET BAGS & ODD SHAPED OBJECTS)........ pages 18-22 PRINCIPLES OF OPERATION .................................................................................. pages 23-25 OPERATING OVERVIEW ..........................................................................................
    [Show full text]
  • Why Can't All Plastics Be Recycled?
    Why can’t all plastics be recycled? Plastic has become prevalent because it is inexpensive and it can be engineered with a wide range of properties. Plastics are strong but lightweight, somewhat resistant to being degraded by chemicals, sunlight, and bacteria, and are thermally and electrically insulating. What does the symbol mean? A chasing arrows symbol, or resin code, does not mean that a plastic container is recyclable. Most plastic containers are marked with the chasing arrows symbol ‐ number one through seven in the center. The number inside the arrows signifies the main chemical compound used to make that plastic container. Unfortunately, the symbol does not mean that plastic container can be recycled. There are seven resin codes used inside the chasing arrow symbols: 1. PETE Polyethylene Terephthalate is in pop and water bottles. Please recycle. 2. HDPE High Density Polyethylene is opaque and usually in bottles that store laundry detergent and milk. These are usually recyclable. 3. V Polyvinyl Chloride (PVC) is found in plastic pipes, shrink wrap. 4. LDPE Low Density Polyethylene is in produce bags, plastic wrap, and plastic bags. 5. PP Polypropylene is used for yogurt tubs, ketchup bottles. 6. PS Polystyrene is found in Styrofoam, used for egg crates. 7. Other This category covers a vast mixture of resins and includes food containers (clam shells), polycarbonate used in sport bottles, and bio‐based plastic used in compostable food containers. Why don’t we recycle all these plastics? Most cities collect #1 and #2 types of plastic, or the plastic bottles made from PETE/PET and HDPE resin.
    [Show full text]
  • Supplier Packaging Guidelines Hyster-Yale Group
    Page 1 of 26 Supplier Packaging Guidelines For Locations in North America Hyster-Yale Group Revision 2 October 21, 2016 This is a controlled document with the electronic read-only domain, accessed from the HYG Master Index. Any person in possession of a printed copy of this parent document, or cited appendices, has an uncontrolled copy and should refer to the Master Index or approved web site for revision level status. ©Hyster-Yale Group, Incorporated. All rights reserved. DCN 36243 Rev. 2 Effective Date: 21 October 2016 HYG Supplier Packaging Guidelines Page 2 of 26 Table of Contents 1 INTRODUCTION ............................................................................................................................ 4 1.1 SCOPE .................................................................................................................................... 4 1.2 PURPOSE ............................................................................................................................... 4 2 ACCEPTABLE PACKAGING ............................................................................................................. 4 2.1 EXPENDABLE PACKAGING ...................................................................................................... 4 2.1.1 BAGS ............................................................................................................................... 4 2.1.2 CORRUGATED CARTONS ................................................................................................. 5 2.1.2.1
    [Show full text]
  • Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: an Overview
    polymers Review Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview Diako Khodaei, Carlos Álvarez and Anne Maria Mullen * Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland; [email protected] (D.K.); [email protected] (C.Á.) * Correspondence: [email protected]; Tel.: +353-(1)-8059521 Abstract: Biodegradable polymers are non-toxic, environmentally friendly biopolymers with con- siderable mechanical and barrier properties that can be degraded in industrial or home composting conditions. These biopolymers can be generated from sustainable natural sources or from the agri- cultural and animal processing co-products and wastes. Animals processing co-products are low value, underutilized, non-meat components that are generally generated from meat processing or slaughterhouse such as hide, blood, some offal etc. These are often converted into low-value products such as animal feed or in some cases disposed of as waste. Collagen, gelatin, keratin, myofibrillar proteins, and chitosan are the major value-added biopolymers obtained from the processing of animal’s products. While these have many applications in food and pharmaceutical industries, a sig- nificant amount is underutilized and therefore hold potential for use in the generation of bioplastics. This review summarizes the research progress on the utilization of meat processing co-products to fabricate biodegradable polymers with the main focus on food industry applications. In addition, the factors affecting the application of biodegradable polymers in the packaging sector, their current industrial status, and regulations are also discussed. Citation: Khodaei, D.; Álvarez, C.; Mullen, A.M. Biodegradable Keywords: biodegradable polymers; packaging materials; meat co-products; animal by-products; Packaging Materials from Animal protein films Processing Co-Products and Wastes: An Overview.
    [Show full text]
  • WRAP | Understanding Plastic Packaging 1 Plastic Can Be Made from Fossil-Based This Diagram Demonstrates the Or Bio-Based Materials
    Understanding plastic packaging and the language we use to describe it The way a plastic is designed This document sets out to clarify the differences Contents to behave alongside what between the materials used Material type 3 to make plastic packaging, Behaviour and features 4 material it’s made from, the way plastics can behave affects what it can be used and, the terminology used Suitability for recycling 5 for as well as how it can be to describe plastics. Treatment and disposal route 6 Environmental impact 7 recycled and disposed of at Carbon footprint over life cycle 8 the end of its life. Glossary 9 References 10 With plastics top of the sustainability compostable – and the effect these agenda many companies are looking factors have on how it’s collected at alternatives to conventional and disposed of. plastic typically used for packaging applications. Understanding the terms that we use to describe plastics is essential However, there is potential for the to ensure that the right materials language that we use to describe are used in the right applications, plastics to be confusing: with the and so that all plastics are recycled different material types of plastic – in the right way and pollution of fossil-based or bio-based; how the environment is prevented. plastic is described and referred to – conventional plastics or bioplastics; This document is aimed at anyone and, how plastic behaves – non- who is interested in understanding biodegradable, biodegradable or the complexities around different types of plastic. WRAP | Understanding plastic packaging 1 Plastic can be made from fossil-based This diagram demonstrates the or bio-based materials.
    [Show full text]