(12) United States Patent (10) Patent No.: US 8,882,965 B2 Yamagami Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,882,965 B2 Yamagami Et Al USOO8882965B2 (12) United States Patent (10) Patent No.: US 8,882,965 B2 Yamagami et al. (45) Date of Patent: Nov. 11, 2014 (54) PAPER RECYCLING SYSTEMAND PAPER (56) References Cited RECYCLING METHOD U.S. PATENT DOCUMENTS (75) Inventors: Toshiaki Yamagami, Shiojiri (JP); Ken 4,668,339 A 5/1987 Terry Ikuma, Suwa (JP) 5,564,635 A 10, 1996 Terada et al. 7,290,353 B2 * 1 1/2007 Yancey et al. .................. 34,221 (73) Assignee: Seiko Epson Corporation, Tokyo (JP) 7.334,347 B2 * 2/2008 Mann et al. ..................... 34/359 (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. JP 50-69306 A 6, 1975 JP 52-144407 A 12, 1977 JP 01-148888 A 12/1989 (21) Appl. No.: 13/979,089 JP 06-093585 A 4f1994 JP 06-155418 A 6, 1994 (22) PCT Filed: Dec. 20, 2011 JP 07-026451 A 1, 1995 JP O7-102493 A 4f1995 (86). PCT No.: PCT/UP2011/007124 JP O7-124498 A 5, 1995 JP 2001-140.184 A 5, 2001 S371 (c)(1), JP 2003-5.00560 A 1, 2003 (2), (4) Date: Oct. 3, 2013 JP 2008-508443 A 3, 2008 WO 2006O12898 A1 2, 2006 (87) PCT Pub. No.: WO2012/095928 * cited by examiner PCT Pub. Date: Jul.19, 2012 Primary Examiner — Mark Halpern (65) Prior Publication Data (74) Attorney, Agent, or Firm — Global IP Counselors, LLP US 2014/OO27075A1 Jan. 30, 2014 (57) ABSTRACT (30) Foreign Application Priority Data To provide a paper recycling device capable of recycling paper of increased whiteness level that can be widely used for Jan. 12, 2011 (JP) ................................. 2011-004113 applications other than paper for newspapers, the paper recy Jan. 14, 2011 (JP) ................................. 2011-005573 cling device of the present invention has a dry type defibrator Jan. 14, 2011 (JP) ................................. 2011-005574 for crushing and defibrating paper, a first transport pipe for transporting defibrated material that was defibrated by the dry (51) Int. Cl. type defibrator, a cyclone for air classifying and deinking the D21B I/32 (2006.01) defibrated material transported by the first transport pipe, a D2C5/02 (2006.01) second transport pipe for transporting the defibrated material (52) U.S. Cl. that was deinked by the cyclone, and a paperforming machine USPC ............................................... 162/261: 162/4 for forming paper with the defibrated material transported by (58) Field of Classification Search the second transport pipe. USPC ................................. 162/261, 4:34/359,221 See application file for complete search history. 7 Claims, 3 Drawing Sheets \ OLE PAPER U.S. Patent Nov. 11, 2014 Sheet 1 of 3 US 8,882,965 B2 OLD PAPER O 2- -5 TO DEINKED FIBERS 190 AUTOMATICFEED THICKNESS MECHANISM SENSOR MAIN DRYTYPE CONTROL DEFIBRATING UNIT MACHINE U.S. Patent Nov. 11, 2014 Sheet 2 of 3 US 8,882,965 B2 OLD PAPER TO sesses2-4- 9. NK GRAINS Fig. 3 U.S. Patent Nov. 11, 2014 Sheet 3 of 3 US 8,882,965 B2 OLD PAPER O-a- series 70 NK GRAINS Fig. 4 US 8,882,965 B2 1. 2 PAPER RECYCLING SYSTEMAND PAPER called deinking process that removes components of ink RECYCLING METHOD grains and the like contained in the fiber obtained by defibrat ing old paper, so there was the problem that the whiteness This application is a 371 of PCT/JP2011/007124 filed 20 level was low, and its applicability was limited to paper for Dec. 2011. printing newspapers or the like. CROSS-REFERENCE TO THE RELATED APPLICATIONS Means for Solving the Problems This U.S. national phase application claims priority to 1 To address problems such as those noted above, the inven Japanese Patent Application Nos. 2011/0041 13, 2011/ 0 tion is characterized in that the paper recycling device of the 005573, and 2011/005574 filed on Jan. 12, 2011, Jan. 14, invention has a dry type defibrator unit for crushing paper and 2011, and Jan. 14, 2011 respectively. The entire disclosure of defibrating it, a first transport unit for conveying defibrated Japanese Patent Application Nos. 2011/0041 13, 2011/ material defibrated by the dry type defibrator unit, a classifier 005573, and 2011/005574 is hereby incorporated herein by unit that does deinking by doing air flow classification of the reference. 15 defibrated material transported by the first transport unit, a second transport unit that transports the defibrated material BACKGROUND deinked by the classifier unit, and a paper forming unit that forms paper with the defibrated material transported by the 1. Technical Field second transport unit. The present invention relates to a paper recycling device Also, with the paper recycling device of the invention, the and paper recycling method based on paper recycling tech flow velocity of the airflow of the classifier units connecting nology using a dry method that to the extent possible does not part with the first transportunit is higher than the flow velocity uSe Water. of the airflow of the dry type defibrator units connecting part 2. Background Art with the first transport unit. In the past, with recycling of old paper discharged from 25 Also, with the paper recycling device of the invention, the offices or the like, a so-called wet method was used by which classifier unit is a cyclone. old paper was put into water, defibrated using mainly Also, with the paper recycling device of the invention, the mechanical action, and remade. This kind of wet method old paper forming unit has a dispersion member for dispersing in paper recycling requires a large Volume of water, so the pro the air the defibrated material transported by the second trans cessing scale has to be large to make it inexpensive. Because 30 portunit, a Suction member for Suctioning the dispersed defi of that, collecting a large Volume of old paper is essential, and brated material, and a mesh belt for transporting the defi in addition to a great deal of effort being required for prepa brated material suctioned by the suction member. ration and maintenance of the water processing equipment, Also, with the paper recycling device of the invention, the there was also the problem that a large Volume of energy is mesh belt transports the formed paper and also has a water used for the drying process. 35 sprayer for spraying water on the formed paper. However, since old paper on which confidential items are Also, the paper recycling device of the invention has a noted is also discharged from offices, from the perspective of heater roller for heating the paper sprayed by water using the maintaining confidentiality as well, there is a desire to process water sprayer. old paper within one's own office. However, since the volume Also, the paper recycling device of the invention has a third of old paper discharged from a small office is Small, it is 40 transport unit for transporting classified material classified difficult to ensure the Volume necessary for a large scale from the defibrated material by the classifier unit, and a suc process like that described above. Also, it is not realistic to tion unit that Suctions the classified material transported by install equipment for large scale processing like that noted the third transportunit. above within an office. In light of that, to do paper recycling, Also, the paper recycling method of the invention is char up to now, several dry method paper recycling technologies 45 acterized by defibrating paperby dry type crushing, transport that to the extent possible do not use water have been pro ing the defibrated material using the first transportunit, doing posed. airflow classification and deinking of the defibrated material For example, disclosed with the invention noted in Patent transported by the first transport unit, transporting by the Document 1 (Patent Application Publication No. H01 second transport unit the defibrated material deinked by the 148888) is use of secondary fiber sources as sheets for print 50 classifying process, and forming paper using the defibrated ing newspaper by defibrating them using a dry method, and by material transported by the second transport unit. making the printed ink into tiny ink spots that are difficult to Also, the paper recycling device of the invention is char detect. acterized by having a dry type defibrator unit for doing dry type crushing and defibrating of paper, a first transportunit for PRIOR ART DOCUMENTS 55 transporting using air flow the defibrated material defibrated by the dry type defibrator unit, an adjustment unit for adjust Patent Documents ing the air flow of the first transportunit, a classifier unit for doing air flow classification and deinking of the defibrated Patent Document 1: Patent Application Publication No. material transported by the first transportunit, a second trans HO1-148888 60 portunit for transporting the defibrated material deinked by the classifier unit, and a paperforming unit for forming paper SUMMARY from the defibrated material transported by the second trans port unit. Problems the Invention is Intended to Solve Also, with the paper recycling device of the invention, the 65 first transportunit has a transport pipe for moving defibrated However, the paper that is recycled using the technology material, and the adjustment unit adjusts the cross section noted in Patent Document 1 has not gone through the so Surface area of the transport pipe. US 8,882,965 B2 3 4 Also, with the paper recycling device of the invention, the ing the deinked defibrated material, and forming paper with flow velocity of the airflow of the classifier units connecting the transported defibrated material. part with the first transportunit is greater than the flow veloc As described above, the paper recycling device and paper ity of the air flow of the dry type defibrator units connecting recycling method of the invention uses the classifier unit to do part with the first transport unit.
Recommended publications
  • Extended Impregnation Kraft Cooking of Softwood: Effects on Reject, Yield, Pulping Uniformity, and Physical Properties
    Extended Impregnation Kraft Cooking of Softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström Licentiate thesis Royal Institute of Technology (KTH) Department of Fibre and Polymer Technology Division of Wood Chemistry and Pulp Technology Stockholm 2009 TRITA-CHE-Report 2009:59 ISSN 1654-1081 ISBN 978-91-7415-496-2 Extended impregnation kraft cooking of softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknologie licentiatexamen fredagen den 18:e december 2009, kl. 10.00 i STFI-salen, Innventia AB, Drottning Kristinas väg 61, Stockholm. Avhandlingen försvaras på svenska. © Katarina Karlström Stockholm 2009 Department of Fibre and Polymer Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden Abstract Converting wood into paper is a complex process involving many different stages, one of which is pulping. Pulping involves liberating the wood fibres from each other, which can be done either chemically or mechanically. This thesis focuses on the most common chemical pulping method, the kraft cooking process, and especially on a recently developed improvement of the impregnation phase, which is the first part of a kraft cook. Extended impregnation kraft cooking (EIC) technique is demonstrated to be an improvement of the kraft pulping process and provides a way to utilize softwood to a higher degree, at higher pulp yield. We demonstrate that it is possible to produce softwood ( Picea abies ) kraft pulp using a new cooking technique, resulting in a pulp that can be defibrated without inline refining at as high lignin content as 8% on wood, measured as kappa numbers above 90.
    [Show full text]
  • Deinking of Screen-Printed Electrodes Printed on Invasive Plant-Based Paper
    sustainability Article Article DeinkingDeinking of of Screen-Printed Screen-Printed Electrodes Printed on InvasiveInvasive Plant-Based Plant-Based Paper UrškaUrška Kav Kavˇciˇc*čič *, Igor, Igor Karlovits Karlovits and and Janja Janja Zule Zule PulpPulp and and Paper Paper Institute, Institute, Bogiši Bogiši´ceva8,ćeva 8, 1000 Ljubljana, Slov Slovenia;enia; igor.karlovits@icp-lj. [email protected] (I.K.); janja.zule@icp- [email protected] (J.Z.) (J.Z.) * Correspondence: [email protected] Received: 21 January 2020; Accepted: 6 February 2020; Published: date Received: 21 January 2020; Accepted: 9 February 2020; Published: 12 February 2020 Abstract: The deinking of paper-based printed electronics is a growing concern regarding the Abstract: The deinking of paper-based printed electronics is a growing concern regarding the increase increase of printed electronics products. The benefits of using paper-based substrates instead of of printed electronics products. The benefits of using paper-based substrates instead of polymer polymer or ceramic for the single-use printed electrodes can contribute to sustainability goals. The or ceramic for the single-use printed electrodes can contribute to sustainability goals. The use of use of invasive plant species for making paper substrates for printed electronics is a unique invasive plant species for making paper substrates for printed electronics is a unique opportunity opportunity to have several environmental benefits. In this study, the recycling issue of these to have several environmental benefits. In this study, the recycling issue of these products through products through the use of the deinking technique was evaluated. Screen-printed electrodes the use of the deinking technique was evaluated.
    [Show full text]
  • Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S
    LBNL-46141 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S. Pulp and Paper Industry N. Martin, N. Anglani, D. Einstein, M. Khrushch, E. Worrell, and L.K. Price Environmental Energy Technologies Division July 2000 This work was supported by the Climate Protection Division, Office of Air and Radiation, U.S. Environmental Protection Agency through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S.
    [Show full text]
  • Pulp and Paper Chemistry and Technology Volume 2
    Pulp and Paper Chemistry and Technology Volume 2 Pulping Chemistry and Technology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Pulp and Paper Chemistry and Technology Volume 2 This project was supported by a generous grant by the Ljungberg Foundation (Stiftelsen Erik Johan Ljungbergs Utbildningsfond) and originally published by the KTH Royal Institute of Technology as the “Ljungberg Textbook”. Pulping Chemistry and Technology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Editors Dr. Monica Ek Professor (em.) Dr. Göran Gellerstedt Professor Dr. Gunnar Henriksson Wood Chemistry and Pulp Technology Fibre and Polymer Technology School of Chemical Science and Engineering KTH Ϫ Royal Institute of Technology 100 44 Stockholm Sweden ISBN 978-3-11-021341-6 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. ” Copyright 2009 by Walter de Gruyter GmbH & Co. KG, 10785 Berlin. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanic, including photocopy, recording, or any information storage retrieval system, without permission in writing from the publisher. Printed in Germany. Typesetting: WGV Verlagsdienstleistungen GmbH, Weinheim, Germany. Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen, Germany. Cover design: Martin Zech, Bremen, Germany. Foreword The production of pulp and paper is of major importance in Sweden and the forestry industry has a profound influence on the economy of the country. The technical development of the industry and its ability to compete globally is closely connected with the combination of high-class education, research and development that has taken place at universities, institutes and industry over many years.
    [Show full text]
  • Alternative & Emerging Pulping Technologies: Non-Kraft Processes
    ., 1 FOR PRESENTATION AT THE “INTERNATIONAL SYMPOSIUM ON POLLUTION p.f’. ‘TP”f,~~~~~ IN THE MANUFACTURE OF PULP & PAPER”, AUG. 18-20; 1992 AT WASHINGTON, D.C. ,?iLTERNATIVE & EMERGING PULPING TECHNOLOGIES: NON-KRAFT PROCESSES by Bruce I. Fleming, Boise Cascade R&D, Portland, OR 97217 Kraft pulping, invented over 100 years ago, gradually achieved dominance as a result of continued refinements. In the last 40 years, scores of processes have been proposed to replace kraft pulping, but few have received even a single mill trial. It is a big step from a laboratory demonstration to commercial reality, and most of the competing processes have failed to do sufficiently well in ;,lot trials to convince investors to go ahead at full scale. __ This does not mean that the kraft process will always be dominant, but it indicates the extreme effort and cost that is involved in commercializing any alternative to this established and versatile pulping technique. Kraft, of course, is itself a moving target. New refinements, like extended delignification, made it tougher to beat. This brief review covers the main competitors to the kraft process for the production of chemical pulp, namely the sulfite processes, soda-anthraquinone (AQ) pulping and the solvent pulping processes. The processes selected for discussion are commercially proven, or at least have had extensive pilot plant trials . 1. SULFITE PROCESSES The sulfite processes provide pulps which have inferior strength properties to those of kraft pulp but nonetheless are enjoying some success in the European marketplace at present because, unlike kraft pulp, they respond well to bleaching with hydrogen peroxide.
    [Show full text]
  • Formability of Paper and Its Improvement N C O H I N S
    IENCE SC • VTT SCIENCE • T S E Formability of paper and its improvement N C O H I N S O I Paper and paperboard are the most utilized packaging materials in V Dissertation L • O S the world. This is due to such features as: renewability, G T 94 Y H • R biodegradability, recyclability,sustainability and unmatched G I E L S H printability. However, paper packaging is inferior to plastics in 94 E G A I R H C respect to moisture sensiivity, and limited ability to be converted H into advanced 3D shapes with added The ability of paper and paperboard to be formed into 3D shapes is described as formability, and in the fixed blank forming processes formability is governed by the extensibility of paper. The primary objective of this thesis is to improve the formability of Formability of paper and its improvement paper by increasing its extensibility. An additional objective is the characterization of formability as a mechanical property of paper and the development of a testing platform for the evaluation of formability. The formability (extensibility) of paper was improved using a set of methods which included: mechanical treatment of fibres, spraying of agar and gelatine, in-plane compaction of paper and unrestrained drying. Extensibility of paper was increased from 4% points (untreated fibres) to 15–18% points (mechanical treatment and addition of polymers), and up to 30% (in one direction) after compaction. This corresponds to tray-like shapes with a depth of 2–3 cm, depending on the curvature. Such values of formability are the highest reported so far in the scientific literature.
    [Show full text]
  • Paper Recycling System and Paper Recycling Process
    (19) TZZ Z_T (11) EP 2 664 708 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 20.11.2013 Bulletin 2013/47 D21B 1/08 (2006.01) (21) Application number: 11855915.2 (86) International application number: PCT/JP2011/007124 (22) Date of filing: 20.12.2011 (87) International publication number: WO 2012/095928 (19.07.2012 Gazette 2012/29) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • YAMAGAMI, Toshiaki GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Suwa-shi PL PT RO RS SE SI SK SM TR Nagano 392-8502 (JP) • IKUMA, Ken (30) Priority: 12.01.2011 JP 2011004113 Suwa-shi 14.01.2011 JP 2011005573 Nagano 392-8502 (JP) 14.01.2011 JP 2011005574 (74) Representative: HOFFMANN EITLE (71) Applicant: Seiko Epson Corporation Patent- und Rechtsanwälte Shinjuku-ku Arabellastrasse 4 Tokyo 163-0811 (JP) 81925 München (DE) (54) PAPER RECYCLING SYSTEM AND PAPER RECYCLING PROCESS (57) To provide a paper recycling device capable of defibrator 30, a cyclone 50 for air classifying and deinking recycling paper of increased whiteness level that can be the defibrated material transported by the first transport widely used for applications other than paper for news- pipe 40, a second transport pipe 60 for transporting the papers, the paper recycling device of the present inven- defibrated material that was deinked by the cyclone 50, tion has a dry type defibrator 30 for crushing and defi- and a paper forming machine 100 for forming paper with brating paper, a first transport pipe 40 for transporting the defibrated material transported by the second trans- defibrated material that was defibrated by the dry type port pipe 60.
    [Show full text]
  • Effect of Fiber Loading on Paper Properties
    EFFECT OF FIBER LOADING ON loading, a method for manufacturing calcium carbonate during PAPER PROPERTIES the refining process, was reported (4–6). The benefits reported include using carbon dioxide from stack gases as a chemical John H. Klungness Freya Tan reactant, extending our fiber resource by substituting low-cost Chemical Engineer Chemical Engineer filler for more expensive fiber at a higher level than possible Marguerite S. Sykes Said Abubakr with conventional methods, retaining filler during recycling Forest Products Technologist Super. Chemical Engineer which minimizes sludge, and improving brightness and color USDA Forest Service USDA Forest Service of the finished paper. Forest Products Laboratory 1 Forest Products Laboratory Madison, WI 53705-2398 Madison, WI 53705-2398 Initial reported experiments were done on handsheet scale. This paper also reports results of handsheet experiments. However, Jacob D. Eisenwasser our experiments were prompted by results of semicommercial- Manager of Development Projects scale trials using fiber-loaded pulp. Semicommercial trials Liquid Carbonic Industries often reveal aspects of proposed industrial technology that can- Chicago, IL not be revealed in handsheet-scale experiments, Fiber-loading experiments were conducted on industrial-scale ABSTRACT equipment simultaneously using an atmospheric high consis- tency refiner as a mixer and refiner, followed by high consis- tency pressurized refining under carbon dioxide pressure. The This study examined the effect on paper properties of fiber- pulp
    [Show full text]
  • Continuous Pulping Processes
    Continuous Pulping Processes Disclaimer: In some cases, the Million Book Project has been unable to trace the copyright owner. Items have been reproduced in good faith. We would be pleased to hear from the copyright owners. Queensland University of Technology. Brisbane, Australia TAPPI STAP SERIES 1 The Training of Supervisors in Corrugated Box Plants: Ten Lesson Plans; Lesson 11: Time Study 2 Petroleum Waxes: Characterization, Performance, and Addi­ tives 3 *Preparation, Circulation, and Storage of Corrugating Adhesives 4 *Operations Research and the Design of Management Informa­ tion Systems 5 Management Science in Planning and Control 6 Technical Evaluation of Petroleum Waxes * Out of print. Photocopy may be obtained from University Microfilms, Ann Arbor, Michigan 48106. Johan Richter Pioneer in Continuous Pulping Technology Born in Lier, Norway, in 1901 Continuous Pulping Processes 12 Lectures By Sven Rydholm Director of Research Billeruds AB SPECIAL TECHNICAL ASSOCIATION PUBLICATION • STAP NO. 7 Gardens Point A22810250B Continuous pulping processes : 12 lectures A22810250B ©Copyright 1970 by Technical Association of the Pulp and Paper Industry 360 Lexington Avenue, New York, N. Y. 10017 Library of Congress Catalog Card Number: 74-140131 Printed in the United States of America By Mack Printing Company, Easton, Pa. Preface This book is a compilation of lectures given at the TAPPI Pacific Section Meeting in Seattle, Wash., in September 1968. They dealt with experiences in continuous pulping obtained over more than one decade at Billeruds AB in collaboration with AB Kamyr. One reason for my choice of topic was that Kamyr digesters have dom­ inated the most vital operation in our industry for more than ten years and still do, although some signs of healthy competition have appeared.
    [Show full text]
  • Fulltext I DIVA
    Thesis for the degree of Doctor of Technology, Sundsvall 2008 WOOD AND FIBRE MECHANICS RELATED TO THE THERMOMECHANICAL PULPING PROCESS Jan-Erik Berg Supervisors: Per Engstrand Per A. Gradin FSCN - Fibre Science and Communication Network Department of Natural Sciences, Engineering and Mathematics Mid Sweden University, SE-851 70 Sundsvall, Sweden ISSN 1652-893X, Mid Sweden University Doctoral Thesis 63 ISBN 978-91-86073-15-2 FSCN Fibre Science and Communication Network - ett skogsindustriellt forskningsprogram vid Mittuniversitetet Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall framläggs till offentlig granskning för avläggande av teknologie doktorsexamen fredag, 21 november, 2008, klockan 10.00 i sal O 102 (SCA-salen), Mittuniversitetet Sundsvall. Seminariet kommer att hållas på svenska. WOOD AND FIBRE MECHANICS RELATED TO THE THERMOMECHANICAL PULPING PROCESS Jan-Erik Berg © Jan-Erik Berg, 2008 FSCN - Fibre Science and Communication Network Department of Natural Sciences, Engineering and Mathematics Mid Sweden University, SE-851 70 Sundsvall Sweden Telephone: +46 (0)771-975 000 Printed by Kopieringen Mittuniversitetet, Sundsvall, Sweden, 2008 i WOOD AND FIBRE MECHANICS RELATED TO THE THERMOMECHANICAL PULPING PROCESS Jan-Erik Berg FSCN - Fibre Science and Communication Network Department of Natural Sciences, Engineering and Mathematics Mid Sweden University, SE-851 70 Sundsvall, Sweden ISSN 1652-893X, Mid Sweden University Doctoral Thesis 63 ISBN 978-91-86073-15-2 ABSTRACT The main objective of this thesis was
    [Show full text]
  • Fiberboard and Hardboard Research at the Forest Products Laboratory: a 50-Year Summary
    United States Department of Agriculture Fiberboard and Forest Service Hardboard Forest Products Laboratory Research at the General Technical Report Forest Products FPL-47 Laboratory A 50-Year Summary Abstract On the Cover Many changes have occurred in the Top. Racking test of full-scale (9-by fiber-based panel products industries 14-ft) wall section with fiberboard during the past 50 years. During this sheathing conducted at FPL in timespan the Forest Products 1932. Laboratory has conducted a Bottom. Small-scale (2-by 2-ft) wall considerable amount of research on racking test developed at FPL in processing and product evaluation of 1976 as an economical way to fiber-based panel product materials. augment full-scale testing. Unfortunately about 26 percent of this information was never published. This report compiles all of the studies completed during this timespan and briefly summarizes what was accomplished. Keywords: Hardboard, fiberboard, summary, processing, raw materials, properties, performance. October 1985 Myers, Gary C.; McNatt, J. Dobbin Fiberboard and hardboard research at the Forest Products Laboratory: A 50-year summary. Gen. Tech. Rep. FPL-47. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 1985. 39 p. A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705. Laboratory publications are sent to over 1,000 libraries in the United States and elsewhere. The Laboratory is maintained in cooperation with the University of Wisconsin. Contents Page Introduction . 1 Manufacturing and Raw Material Variables . 2 Fiber Resources, 2; Fiber Preparation, 2 Additives and Fiber Treatments .
    [Show full text]
  • White Paper Combines Technical Information Obtained from Valmet Personnel and Published Valmet Articles and Papers
    Published January 27, 2014 Digester developments Digester developments Executive Summary In order to produce pulp the chip column must be moving - this has become one of the most important tasks for the operator. The chip column movement in a two-vessel hydraulic digester can be improved by converting the digester to a two-vessel steam/liquor phase digester. This paper describes the factors important for chip column movement and presents the results from a digester conversion at BillerudKorsnäs, Gävle Mill, Sweden. For many years pulping development for kraftliner has been limited. With the modifications of Item 222/Rule 41 the situation in the U.S. has changed. Recently a new cooking technology has been developed enabling defibration of softwood pulps at considerably higher kappa number with low reject content. Lower H-factor demands and increased strength, measured as tensile energy absorption, were the most important differences found between the two cooking systems in this study. © Valmet Page | 1 Published January 27, 2014 Digester developments Chip column movement in a continuous digester Abstract Most continuous digesters are between 30-50 years old and in many cases the production has been increased by 50-100%. In some cases, the kappa target and/or wood specie has been changed too. These digesters no longer operate under the conditions they originally were designed for. In order to produce pulp the chip column must be moving and this has become one of the most important tasks for the operator. The chip column movement in a two-vessel hydraulic digester can be improved by converting the digester to a two-vessel steam/liquor phase digester.
    [Show full text]