Surface Mechanical Treatment of Tmp Pulp

Total Page:16

File Type:pdf, Size:1020Kb

Surface Mechanical Treatment of Tmp Pulp SURFACE MECHANICAL TREATMENT OF bars is relatively small, resulting in the sliding of wood chips TMP PULP FIBERS USING GRIT MATERIAL and fibers off the bars, and thus less treatment. Several researchers have attempted to overcome these prob- Phichit Somboon and Hannu Paulapuro lems by applying a combination of grinding and refining, us- Helsinki University of Technology ing a modified refiner plate with an abrasive surface [11-14]. Laboratory of Paper and Printing Technology This technique has shown the potential for reducing the en- P.O. Box 6300, FIN-02015 TKK, Finland ergy consumption. However, it has not been successful in practical applications because of problems with the modifica- ABSTRACT tion of the segments, the operation of refiners and the inten- Surface mechanical treatment of pulp fibers using grit mate- sive destruction of pulp fibers. To make it possible to apply rial in thermomechanical pulp (TMP) refining after the first- the grinding technique to wood chip refining, it is necessary to stage refining and the subsequent refining of the treated pulp determine where this technique should be applied, and how were studied. The surface mechanical treatment was per- the fibers can be efficiently broken down and fibrillated. formed using an ultra-fine friction grinder. The grit size of the grinding stone, the intensity of treatment and the rotational In the present research project, the focus was on reducing the speed were optimized to accomplish fast development and to energy consumption in the fibrillation stage (the second stage minimize the shortening of pulp fibers. The subsequent refin- of refining). The research hypothesis was the elastic work can ing was carried out using a wing defibrator operated under be reduced by increasing the disruption and opening the fiber typical TMP refining conditions. According to the results, sur- wall structure during the defibration stage by applying grit face mechanical treatment using a grinding stone with a grit material through the grinding method, thereby promoting the diameter of 297-420 µm, operated at a contact point of the development of pulp fibers and reducing the energy consump- stones and a high rotational speed of 1500 rpm, provided an tion. In a previous study [15], high-freeness TMP pulp from a efficient disruption of pulp fibers with minimized cutting. Dis- reject line was disrupted with grit material and subsequently ruption of the pulp about 20% of total energy consumption refined under TMP refining conditions. The results showed produced a promising fracture of fiber cell wall for the further the potential for reducing the energy consumption. However, development. In the subsequent refining, the disrupted pulp the pulp fibers were weakened and shortened during grit was found to result in faster development of pulp freeness, treatment and refining. To solve these problems, a deeper un- while requiring 37% less energy. Laboratory sheets showed derstanding must be gained of the parameters involved in the no significant differences in properties between the disrupted use of grit material and appropriate raw materials. and non-disrupted pulps at a given freeness. This study was designed to gain a better understanding of me- chanical treatment using grit material of the first-stage TMP INTRODUCTION pulp fibers, with the aim to achieve efficient disruption of the In the refining of wood chips, the underlying mechanism of fiber wall structure while minimizing the degradation of fiber the development of fibers proceeds in two stages: in the initial quality. Another aim was to evaluate the potential for reducing stage, called the defibration stage, the wood chips are broken the energy consumption in the second stage of treatment, in- down into coarse fibers. In the second stage, called the fibril- cluding disruption and refining. lation stage, they are further developed, e.g., delaminated, peeled off, and fibrillated, to the extent necessary for paper- making. These processes consume over 90% of the total elec- tric energy used in mechanical pulp production [1, 2]. Theo- retically, the energy input required in refining is relatively low [3-6]. It has been addressed that the high energy consumption in refining is the result of inefficient work during the defibra- tion and fibrillation stages, potentially related to the nature of the wood raw material. Wood is a viscoelastic material [3, 7, 8]. The mechanical breakdown of the structure of the wood matrix in refining fundamentally begins from the application of cyclic stresses to the wood matrix. The repeated viscoelastic deformation caused by cyclic stresses results in plastic deformation, which continues until the breaking point of the structure is reached, as shown in Figure 1. The repeated viscoelastic deformation consumes a high amount of energy without producing any de- velopment of wood fibers [2, 3, 8, 9]. Figure 1. Transformation of wood material from vis- In addition, the friction of fibers over the refiner bars plays an coelastic to plastic deformations under cyclically important role for the energy loss. According to Sundholm constant stress [3]. [10], the friction force between the wood material and refiner 1 EXPERIMENTAL Second-stage refining The experiments were divided into two parts. The first part Feed pulps of the second-stage refining were prepared, dis- was designed to find out how to achieve efficient disruption of rupted with grit material under optimized conditions. The de- pulp fibers, while minimizing fiber shortening. The second grees of grit treatment were targeted at 10, 15, and 20% of the part of the experiment was intended to evaluate the potential total refining energy consumption. After the disruption, all for reducing the energy consumption, and to examine the pulp disrupted pulps were thickened to high consistency and further and paper properties of the disrupted pulp produced in the refined under typical TMP refining conditions, as shown in subsequent refining. Figure 2. Raw materials The raw material was the first-stage TMP pulp made from Norway spruce ( Picea abies L. Karst. ) with a CSF of 580 ml produced at Stora Enso’s Summa mill in Finland. Surface mechanical treatment The mechanical treatment of the surface of TMP pulp fibers was carried out using an ultra-fine friction grinder [15]. In the beginning of the study, the key process parameters of the grinder were analyzed for optimizing the treatment in order to achieve fast disruption of pulp fibers, while minimizing fiber shortening. The analysis was based on a statistical model of a single replication of a 2 3 factorial design [16], as shown in Table 1. The intensity of treatment, rotational speed and grit Figure 2. Experimental schematic of the second- size of the grinding stone were considered. stage treatment of TMP pulp with a combination of disruption and refining. Table 1. A 2 3 factorial experiment for analysis of sur- face mechanical treatment of the first-stage TMP Second-stage refining was carried out using a wing defibrator pulp fibers using grit material. at Helsinki University of Technology [15]. The feed pulps were controlled at a consistency of 23% and a dry weight of 150 g. The peripheral speed of the defibrator was set to 750 RUN A B C LABELS rpm. The pulps were refined at a temperature of 130 °C with- out preheating and under various specific energy consump- 1 - - - (1) tions from 1 to 5 MWh/t. After refining, pulp samples were 2 + - - a taken for testing fiber and paper properties. The specific en- 3 - + - b ergy consumption in the second stage of treatment, including 4 + + - ab disruption and refining, was evaluated. 5 - - + c 6 + - + ac Sample testing The drainability of pulp fibers and laboratory sheets was 7 - + + bc tested with the whole pulp according to SCAN and ISO stan- 8 + + + abc dards. Drainability was analyzed using a Canadian standard A - Grinding position 30 µm below the contact of stones freeness tester. Laboratory sheets were formed with white wa- A + Grinding position 5 µm below the contact of stones ter circulation, and dried with a drying plate in a conditioning B - Rotational speed 1200 rpm B + Rotational speed 1500 rpm room at 23 °C and 50% RH. The physical properties of labo- C - Grinding stone No. 80, grit diameter of 149-210 µm ratory sheets were determined according to ISO standards. C + Grinding stone No. 46, grit diameter of 297-420 µm Fiber length and coarseness were measured with a Kajaani Fi- The intensity of treatment was based on the relative position berLab apparatus according to TAPPI standards. Fiber length of grinding stones. The position was controlled at below the was measured with the whole pulp. Fiber coarseness was ana- contact point of the stones in the motion stage, at 5 µm (low lyzed from fractionated pulp using a Bauer-McNett classifier intensity) and 30 µm (high intensity) [15]. The peripheral with the screen number 30 (R30). speed of the grinding stone was adjusted to 1200 rpm and 1500 rpm. The impact of the grit size was analyzed by using a The wet strength of long fibers (R30) was determined based on derivation of the breaking stress of wet paper strips at a stone No. 80 with a grit diameter of 149-210 µm and a stone zero span and the number of fibers bearing the load [17]. No. 46 with a grit diameter of 297-420 µm. The pulp slurry feed was controlled at a low consistency of 4% and circulated Breaks in the wall structure of fibers were measured based on through the grinder with four passes. After treatment, the the micropore volume in the cell wall of fractionated fibers pulps were sampled for measuring pulp drainability, fiber (R30). The measurement was made at the Helsinki University length and fiber coarseness for the factorial analysis. of Technology using a differential scanning calorimeter based 2 on the thermoporosimetry method with an isothermal step To achieve efficient disruption of pulp fibers and to minimize melting technique [18].
Recommended publications
  • Extended Impregnation Kraft Cooking of Softwood: Effects on Reject, Yield, Pulping Uniformity, and Physical Properties
    Extended Impregnation Kraft Cooking of Softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström Licentiate thesis Royal Institute of Technology (KTH) Department of Fibre and Polymer Technology Division of Wood Chemistry and Pulp Technology Stockholm 2009 TRITA-CHE-Report 2009:59 ISSN 1654-1081 ISBN 978-91-7415-496-2 Extended impregnation kraft cooking of softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknologie licentiatexamen fredagen den 18:e december 2009, kl. 10.00 i STFI-salen, Innventia AB, Drottning Kristinas väg 61, Stockholm. Avhandlingen försvaras på svenska. © Katarina Karlström Stockholm 2009 Department of Fibre and Polymer Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden Abstract Converting wood into paper is a complex process involving many different stages, one of which is pulping. Pulping involves liberating the wood fibres from each other, which can be done either chemically or mechanically. This thesis focuses on the most common chemical pulping method, the kraft cooking process, and especially on a recently developed improvement of the impregnation phase, which is the first part of a kraft cook. Extended impregnation kraft cooking (EIC) technique is demonstrated to be an improvement of the kraft pulping process and provides a way to utilize softwood to a higher degree, at higher pulp yield. We demonstrate that it is possible to produce softwood ( Picea abies ) kraft pulp using a new cooking technique, resulting in a pulp that can be defibrated without inline refining at as high lignin content as 8% on wood, measured as kappa numbers above 90.
    [Show full text]
  • Deinking of Screen-Printed Electrodes Printed on Invasive Plant-Based Paper
    sustainability Article Article DeinkingDeinking of of Screen-Printed Screen-Printed Electrodes Printed on InvasiveInvasive Plant-Based Plant-Based Paper UrškaUrška Kav Kavˇciˇc*čič *, Igor, Igor Karlovits Karlovits and and Janja Janja Zule Zule PulpPulp and and Paper Paper Institute, Institute, Bogiši Bogiši´ceva8,ćeva 8, 1000 Ljubljana, Slov Slovenia;enia; igor.karlovits@icp-lj. [email protected] (I.K.); janja.zule@icp- [email protected] (J.Z.) (J.Z.) * Correspondence: [email protected] Received: 21 January 2020; Accepted: 6 February 2020; Published: date Received: 21 January 2020; Accepted: 9 February 2020; Published: 12 February 2020 Abstract: The deinking of paper-based printed electronics is a growing concern regarding the Abstract: The deinking of paper-based printed electronics is a growing concern regarding the increase increase of printed electronics products. The benefits of using paper-based substrates instead of of printed electronics products. The benefits of using paper-based substrates instead of polymer polymer or ceramic for the single-use printed electrodes can contribute to sustainability goals. The or ceramic for the single-use printed electrodes can contribute to sustainability goals. The use of use of invasive plant species for making paper substrates for printed electronics is a unique invasive plant species for making paper substrates for printed electronics is a unique opportunity opportunity to have several environmental benefits. In this study, the recycling issue of these to have several environmental benefits. In this study, the recycling issue of these products through products through the use of the deinking technique was evaluated. Screen-printed electrodes the use of the deinking technique was evaluated.
    [Show full text]
  • Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S
    LBNL-46141 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S. Pulp and Paper Industry N. Martin, N. Anglani, D. Einstein, M. Khrushch, E. Worrell, and L.K. Price Environmental Energy Technologies Division July 2000 This work was supported by the Climate Protection Division, Office of Air and Radiation, U.S. Environmental Protection Agency through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S.
    [Show full text]
  • Pulp and Paper Chemistry and Technology Volume 2
    Pulp and Paper Chemistry and Technology Volume 2 Pulping Chemistry and Technology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Pulp and Paper Chemistry and Technology Volume 2 This project was supported by a generous grant by the Ljungberg Foundation (Stiftelsen Erik Johan Ljungbergs Utbildningsfond) and originally published by the KTH Royal Institute of Technology as the “Ljungberg Textbook”. Pulping Chemistry and Technology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Editors Dr. Monica Ek Professor (em.) Dr. Göran Gellerstedt Professor Dr. Gunnar Henriksson Wood Chemistry and Pulp Technology Fibre and Polymer Technology School of Chemical Science and Engineering KTH Ϫ Royal Institute of Technology 100 44 Stockholm Sweden ISBN 978-3-11-021341-6 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. ” Copyright 2009 by Walter de Gruyter GmbH & Co. KG, 10785 Berlin. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanic, including photocopy, recording, or any information storage retrieval system, without permission in writing from the publisher. Printed in Germany. Typesetting: WGV Verlagsdienstleistungen GmbH, Weinheim, Germany. Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen, Germany. Cover design: Martin Zech, Bremen, Germany. Foreword The production of pulp and paper is of major importance in Sweden and the forestry industry has a profound influence on the economy of the country. The technical development of the industry and its ability to compete globally is closely connected with the combination of high-class education, research and development that has taken place at universities, institutes and industry over many years.
    [Show full text]
  • Alternative & Emerging Pulping Technologies: Non-Kraft Processes
    ., 1 FOR PRESENTATION AT THE “INTERNATIONAL SYMPOSIUM ON POLLUTION p.f’. ‘TP”f,~~~~~ IN THE MANUFACTURE OF PULP & PAPER”, AUG. 18-20; 1992 AT WASHINGTON, D.C. ,?iLTERNATIVE & EMERGING PULPING TECHNOLOGIES: NON-KRAFT PROCESSES by Bruce I. Fleming, Boise Cascade R&D, Portland, OR 97217 Kraft pulping, invented over 100 years ago, gradually achieved dominance as a result of continued refinements. In the last 40 years, scores of processes have been proposed to replace kraft pulping, but few have received even a single mill trial. It is a big step from a laboratory demonstration to commercial reality, and most of the competing processes have failed to do sufficiently well in ;,lot trials to convince investors to go ahead at full scale. __ This does not mean that the kraft process will always be dominant, but it indicates the extreme effort and cost that is involved in commercializing any alternative to this established and versatile pulping technique. Kraft, of course, is itself a moving target. New refinements, like extended delignification, made it tougher to beat. This brief review covers the main competitors to the kraft process for the production of chemical pulp, namely the sulfite processes, soda-anthraquinone (AQ) pulping and the solvent pulping processes. The processes selected for discussion are commercially proven, or at least have had extensive pilot plant trials . 1. SULFITE PROCESSES The sulfite processes provide pulps which have inferior strength properties to those of kraft pulp but nonetheless are enjoying some success in the European marketplace at present because, unlike kraft pulp, they respond well to bleaching with hydrogen peroxide.
    [Show full text]
  • Formability of Paper and Its Improvement N C O H I N S
    IENCE SC • VTT SCIENCE • T S E Formability of paper and its improvement N C O H I N S O I Paper and paperboard are the most utilized packaging materials in V Dissertation L • O S the world. This is due to such features as: renewability, G T 94 Y H • R biodegradability, recyclability,sustainability and unmatched G I E L S H printability. However, paper packaging is inferior to plastics in 94 E G A I R H C respect to moisture sensiivity, and limited ability to be converted H into advanced 3D shapes with added The ability of paper and paperboard to be formed into 3D shapes is described as formability, and in the fixed blank forming processes formability is governed by the extensibility of paper. The primary objective of this thesis is to improve the formability of Formability of paper and its improvement paper by increasing its extensibility. An additional objective is the characterization of formability as a mechanical property of paper and the development of a testing platform for the evaluation of formability. The formability (extensibility) of paper was improved using a set of methods which included: mechanical treatment of fibres, spraying of agar and gelatine, in-plane compaction of paper and unrestrained drying. Extensibility of paper was increased from 4% points (untreated fibres) to 15–18% points (mechanical treatment and addition of polymers), and up to 30% (in one direction) after compaction. This corresponds to tray-like shapes with a depth of 2–3 cm, depending on the curvature. Such values of formability are the highest reported so far in the scientific literature.
    [Show full text]
  • Paper Recycling System and Paper Recycling Process
    (19) TZZ Z_T (11) EP 2 664 708 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 20.11.2013 Bulletin 2013/47 D21B 1/08 (2006.01) (21) Application number: 11855915.2 (86) International application number: PCT/JP2011/007124 (22) Date of filing: 20.12.2011 (87) International publication number: WO 2012/095928 (19.07.2012 Gazette 2012/29) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • YAMAGAMI, Toshiaki GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Suwa-shi PL PT RO RS SE SI SK SM TR Nagano 392-8502 (JP) • IKUMA, Ken (30) Priority: 12.01.2011 JP 2011004113 Suwa-shi 14.01.2011 JP 2011005573 Nagano 392-8502 (JP) 14.01.2011 JP 2011005574 (74) Representative: HOFFMANN EITLE (71) Applicant: Seiko Epson Corporation Patent- und Rechtsanwälte Shinjuku-ku Arabellastrasse 4 Tokyo 163-0811 (JP) 81925 München (DE) (54) PAPER RECYCLING SYSTEM AND PAPER RECYCLING PROCESS (57) To provide a paper recycling device capable of defibrator 30, a cyclone 50 for air classifying and deinking recycling paper of increased whiteness level that can be the defibrated material transported by the first transport widely used for applications other than paper for news- pipe 40, a second transport pipe 60 for transporting the papers, the paper recycling device of the present inven- defibrated material that was deinked by the cyclone 50, tion has a dry type defibrator 30 for crushing and defi- and a paper forming machine 100 for forming paper with brating paper, a first transport pipe 40 for transporting the defibrated material transported by the second trans- defibrated material that was defibrated by the dry type port pipe 60.
    [Show full text]
  • Effect of Fiber Loading on Paper Properties
    EFFECT OF FIBER LOADING ON loading, a method for manufacturing calcium carbonate during PAPER PROPERTIES the refining process, was reported (4–6). The benefits reported include using carbon dioxide from stack gases as a chemical John H. Klungness Freya Tan reactant, extending our fiber resource by substituting low-cost Chemical Engineer Chemical Engineer filler for more expensive fiber at a higher level than possible Marguerite S. Sykes Said Abubakr with conventional methods, retaining filler during recycling Forest Products Technologist Super. Chemical Engineer which minimizes sludge, and improving brightness and color USDA Forest Service USDA Forest Service of the finished paper. Forest Products Laboratory 1 Forest Products Laboratory Madison, WI 53705-2398 Madison, WI 53705-2398 Initial reported experiments were done on handsheet scale. This paper also reports results of handsheet experiments. However, Jacob D. Eisenwasser our experiments were prompted by results of semicommercial- Manager of Development Projects scale trials using fiber-loaded pulp. Semicommercial trials Liquid Carbonic Industries often reveal aspects of proposed industrial technology that can- Chicago, IL not be revealed in handsheet-scale experiments, Fiber-loading experiments were conducted on industrial-scale ABSTRACT equipment simultaneously using an atmospheric high consis- tency refiner as a mixer and refiner, followed by high consis- tency pressurized refining under carbon dioxide pressure. The This study examined the effect on paper properties of fiber- pulp
    [Show full text]
  • Continuous Pulping Processes
    Continuous Pulping Processes Disclaimer: In some cases, the Million Book Project has been unable to trace the copyright owner. Items have been reproduced in good faith. We would be pleased to hear from the copyright owners. Queensland University of Technology. Brisbane, Australia TAPPI STAP SERIES 1 The Training of Supervisors in Corrugated Box Plants: Ten Lesson Plans; Lesson 11: Time Study 2 Petroleum Waxes: Characterization, Performance, and Addi­ tives 3 *Preparation, Circulation, and Storage of Corrugating Adhesives 4 *Operations Research and the Design of Management Informa­ tion Systems 5 Management Science in Planning and Control 6 Technical Evaluation of Petroleum Waxes * Out of print. Photocopy may be obtained from University Microfilms, Ann Arbor, Michigan 48106. Johan Richter Pioneer in Continuous Pulping Technology Born in Lier, Norway, in 1901 Continuous Pulping Processes 12 Lectures By Sven Rydholm Director of Research Billeruds AB SPECIAL TECHNICAL ASSOCIATION PUBLICATION • STAP NO. 7 Gardens Point A22810250B Continuous pulping processes : 12 lectures A22810250B ©Copyright 1970 by Technical Association of the Pulp and Paper Industry 360 Lexington Avenue, New York, N. Y. 10017 Library of Congress Catalog Card Number: 74-140131 Printed in the United States of America By Mack Printing Company, Easton, Pa. Preface This book is a compilation of lectures given at the TAPPI Pacific Section Meeting in Seattle, Wash., in September 1968. They dealt with experiences in continuous pulping obtained over more than one decade at Billeruds AB in collaboration with AB Kamyr. One reason for my choice of topic was that Kamyr digesters have dom­ inated the most vital operation in our industry for more than ten years and still do, although some signs of healthy competition have appeared.
    [Show full text]
  • Fulltext I DIVA
    Thesis for the degree of Doctor of Technology, Sundsvall 2008 WOOD AND FIBRE MECHANICS RELATED TO THE THERMOMECHANICAL PULPING PROCESS Jan-Erik Berg Supervisors: Per Engstrand Per A. Gradin FSCN - Fibre Science and Communication Network Department of Natural Sciences, Engineering and Mathematics Mid Sweden University, SE-851 70 Sundsvall, Sweden ISSN 1652-893X, Mid Sweden University Doctoral Thesis 63 ISBN 978-91-86073-15-2 FSCN Fibre Science and Communication Network - ett skogsindustriellt forskningsprogram vid Mittuniversitetet Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall framläggs till offentlig granskning för avläggande av teknologie doktorsexamen fredag, 21 november, 2008, klockan 10.00 i sal O 102 (SCA-salen), Mittuniversitetet Sundsvall. Seminariet kommer att hållas på svenska. WOOD AND FIBRE MECHANICS RELATED TO THE THERMOMECHANICAL PULPING PROCESS Jan-Erik Berg © Jan-Erik Berg, 2008 FSCN - Fibre Science and Communication Network Department of Natural Sciences, Engineering and Mathematics Mid Sweden University, SE-851 70 Sundsvall Sweden Telephone: +46 (0)771-975 000 Printed by Kopieringen Mittuniversitetet, Sundsvall, Sweden, 2008 i WOOD AND FIBRE MECHANICS RELATED TO THE THERMOMECHANICAL PULPING PROCESS Jan-Erik Berg FSCN - Fibre Science and Communication Network Department of Natural Sciences, Engineering and Mathematics Mid Sweden University, SE-851 70 Sundsvall, Sweden ISSN 1652-893X, Mid Sweden University Doctoral Thesis 63 ISBN 978-91-86073-15-2 ABSTRACT The main objective of this thesis was
    [Show full text]
  • Fiberboard and Hardboard Research at the Forest Products Laboratory: a 50-Year Summary
    United States Department of Agriculture Fiberboard and Forest Service Hardboard Forest Products Laboratory Research at the General Technical Report Forest Products FPL-47 Laboratory A 50-Year Summary Abstract On the Cover Many changes have occurred in the Top. Racking test of full-scale (9-by fiber-based panel products industries 14-ft) wall section with fiberboard during the past 50 years. During this sheathing conducted at FPL in timespan the Forest Products 1932. Laboratory has conducted a Bottom. Small-scale (2-by 2-ft) wall considerable amount of research on racking test developed at FPL in processing and product evaluation of 1976 as an economical way to fiber-based panel product materials. augment full-scale testing. Unfortunately about 26 percent of this information was never published. This report compiles all of the studies completed during this timespan and briefly summarizes what was accomplished. Keywords: Hardboard, fiberboard, summary, processing, raw materials, properties, performance. October 1985 Myers, Gary C.; McNatt, J. Dobbin Fiberboard and hardboard research at the Forest Products Laboratory: A 50-year summary. Gen. Tech. Rep. FPL-47. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 1985. 39 p. A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705. Laboratory publications are sent to over 1,000 libraries in the United States and elsewhere. The Laboratory is maintained in cooperation with the University of Wisconsin. Contents Page Introduction . 1 Manufacturing and Raw Material Variables . 2 Fiber Resources, 2; Fiber Preparation, 2 Additives and Fiber Treatments .
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,882,965 B2 Yamagami Et Al
    USOO8882965B2 (12) United States Patent (10) Patent No.: US 8,882,965 B2 Yamagami et al. (45) Date of Patent: Nov. 11, 2014 (54) PAPER RECYCLING SYSTEMAND PAPER (56) References Cited RECYCLING METHOD U.S. PATENT DOCUMENTS (75) Inventors: Toshiaki Yamagami, Shiojiri (JP); Ken 4,668,339 A 5/1987 Terry Ikuma, Suwa (JP) 5,564,635 A 10, 1996 Terada et al. 7,290,353 B2 * 1 1/2007 Yancey et al. .................. 34,221 (73) Assignee: Seiko Epson Corporation, Tokyo (JP) 7.334,347 B2 * 2/2008 Mann et al. ..................... 34/359 (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. JP 50-69306 A 6, 1975 JP 52-144407 A 12, 1977 JP 01-148888 A 12/1989 (21) Appl. No.: 13/979,089 JP 06-093585 A 4f1994 JP 06-155418 A 6, 1994 (22) PCT Filed: Dec. 20, 2011 JP 07-026451 A 1, 1995 JP O7-102493 A 4f1995 (86). PCT No.: PCT/UP2011/007124 JP O7-124498 A 5, 1995 JP 2001-140.184 A 5, 2001 S371 (c)(1), JP 2003-5.00560 A 1, 2003 (2), (4) Date: Oct. 3, 2013 JP 2008-508443 A 3, 2008 WO 2006O12898 A1 2, 2006 (87) PCT Pub. No.: WO2012/095928 * cited by examiner PCT Pub. Date: Jul.19, 2012 Primary Examiner — Mark Halpern (65) Prior Publication Data (74) Attorney, Agent, or Firm — Global IP Counselors, LLP US 2014/OO27075A1 Jan. 30, 2014 (57) ABSTRACT (30) Foreign Application Priority Data To provide a paper recycling device capable of recycling paper of increased whiteness level that can be widely used for Jan.
    [Show full text]