Cerft COURIER INTERNATIONAL JOURNAL of HIGH ENERGY PHYSICS

Total Page:16

File Type:pdf, Size:1020Kb

Cerft COURIER INTERNATIONAL JOURNAL of HIGH ENERGY PHYSICS CERft COURIER INTERNATIONAL JOURNAL OF HIGH ENERGY PHYSICS VOLUME 35 The DRYTEL Series Oil free pumping systems from atmosphere to 109 mbar The Drytel Series provides a clean vacuum down to 10 6or 10 9 mbar range. Completely self contained, single switch operation, the Drytel Series provides dry, compact systems for use anywhere clean vacuum is required. Available in bench top, compact Micro versions or customer specified configurations to better fit applications like calibration benches, surface analysis, mass spectrometry, electron microscopy, and any process that call for clean evacuation. Ceramic bearings are used in all Alcatel molecular pumps. • Alcatel CIT Vacuum Technology Division - 98, avenue de Brogny - BP 2069 - 74009 ANNECY - FRANCE Tel: (33) 50 65 77 77 - Fax: (33) 50 65 77 89 USA United Kingdom Germany Italy Japan Alcatel Vacuum Products Alcatel Vacuum Technology UK Ltd Alcatel Hochvakuumtechnik GmbH Alcatel Vacuum Systems SpA Alcatel ITS Tel : (1)617 331 4200 Tel : (44)494 44 84 44 Tel : (49) 9342 96 100 Tel : (39)2 33 00 80 13 Tel : (81) 354 24 14 14 ISSN 0304-288X Advertising enquiries Europe Volume 35 No. 1 Micheline Falciola January/February Covering current developments in high energy Advertising Manager 1 CERN 995 physics and related fields worldwide CH-1211 Geneva 23, Switzerland Editor: Gordon Fraser (COURIER @ CERNVM)* Tel.: +41 (22) 767 4103 Production and Advertisements: Fax: +41 (22) 782 1906 Micheline Falciola (FAL @ CERNVM)* Advisory Board: E.J.N. Wilson (Chairman), E. Lillestol, Rest of the world H. Satz, D. Treille; with L. Foa, Laurie Daddona E.M. Rimmer Advertising Manager, USA *(Full electronic mail address... @ CERNVM. CERN. CH) Gordon and Breach Publishers 820 Town Center Drive LANGHORNE PA 19047 Tel.: (215) 750-2642 The ultimate birthday present Fax: (215) 750-6343 Approval for CERN's LHC machine Distributed to Member State governments, institutes and laboratories affilliated with CERN, and to their personnel. Around the Laboratories General distribution CERN: Another leap at LEP Improved electron-positron performance Jacques Dallemagne CERN, 1211 Geneva 23, Switzerland DESY: Luminous 1994 In certain countries, to request copies or to 8 Improved electron-proton performance make address changes contact : DARMSTADT: Heaviest of them ail China 8 Elements 110 and 111 synthesized Dr. Qian Ke-Qin Institute of High Energy Physics BEIJING: Green light for feasibility studies on tau-charm factory P.O. Box 918, Beijing, 10 Looking at new Chinese machine People's Republic of China TRIUMF: Technology transfer Germany 11 Canadian industrial spinoff Monika Stuckenberg or Kerstin Techritz DESY, Notkestr. 85, 22603 Hamburg 52 INDIA: Photon multiplicity detector 14 Module for heavy ion physics Italy Mrs. Pieri or Mrs. Montanari ] 5 COMPUTER OPERATING SYSTEMS: HEPiX news INFN, Casella Postale 56 00044 Frascati, Roma Physics monitor United Kingdom *| Q Muon colliders Su Lockley Rutherford Appleton Laboratory, *| Q Cosmic rays of the highest energies Chilton, Didcot, Oxfordshire 0X11 0QX USA/Canada "I Q Antiprotonic heating of nuclei Cyndi Rathbun 20 DESY: Theory workshop looks at supersymmetry (cyndi [email protected]) Fermilab, P.O. Box 500, Batavia Illinois 60510 24 Books received CERN COURIER is published monthly except January and August in English and, 23 People and things French editions. The views expressed in the Journal are not necessarily those of the CERN management. Printed by: Drukkerij Lannoo nv 8700 Tielt, Belgium Published by: European Laboratory for Particle Physics CERN, 1211 Geneva 23, Switzerland tel.: +41 (22)767 61 11, telex: 419 000 CERN CH, telefax: +41 (22) 767 65 55 CERN COURIER only: Cover photograph: How the world's highest energies look. At the end of 1994, tel. +41 (22) 767 41 03, CERN supplied lead nuclei, accelerated to about 160 GeVper nucléon, represent­ ing over 30 TeV of beam energy for each nucleus, to a range of experiments. telefax+41 (22) 782 19 06 This shows what happens when lead meets lead in the Time Projection Chamber USA: Controlled Circulation of the NA49 experiment. With the quest to recreate the quark-gluon plasma which permeated the early hot Universe, definitive results from all these experiments are Second class postage paid at Batavia, Illinois eagerly awaited. CERN Courier, January/February 1995 III LASERS & LIGHT SOURCES H2 and Dye Lasers High Intensity Sources At 2-3 MW peak power output, this is probably Utilising a full range of Xenon, Mercury and Hg/Xe the most powerful N2 laser of its type. Arc lamps, they employ special ellipsoidal reflectors Yet there's no tweaking or adjustment necessary: which guarantee the highest efficiency of collection to operate just set the gas pressure and press and transfer of light in the visible and UV region. ignition - it's that simple! ^ Powerful enough to pump different dye lasers At least 6 times the intensity of conventional * simultaneously or even a dye laser & light sources . unrivalled in intensity for a frequency doubler. given lamp power. Tunable range from 360nm to 990nm and Available as compact sealed units and can be frequency doubler to access UV range from easily connected to monochromators, optical 235nm to 345nm. fibres and other systems. For brochures contact: WSEZÊ Photon Technology International Suite 3 The Sanctuary Oakhill Grove Surbiton Surrey KT6 6DU England Tel: +44 (0) 181 390 6676 Fax: +44 (0) 181 390 6610 eV PRODUCTS Hybrid Electronics Low NOISE, HIGH PERFORMANCE eV PRODUCTS is emerging as a leader in ultra low-noise hybrid electronics. Our family of products has been quietly growing in quality and quantity to satisfy a wide range of commercial and laboratory applications. Call or Fax us today for details and specifications. PRODUCTS - Single Channel Preamplifier Hybrid • Triple Channel Preamplifier Hybrid • Low-noise Single/Triple Channel Laboratory Preamplifier • Shaping Amplifier (0.2 - 5.0 |is) Source High Count Rate High Resolution • Integrated Shaper/Discriminator PCB Capacitance eV-5091 eV-5093 Risetime = 20 ns Risetime = 60 ns FEATURES Falltime = 25 us Falltime = 600 us 0 to 100 pF Sensitivity = 0.45 mv/fc Sensitivity = 2.2 mv/fc • Ultra Low-noise (90 e" rms{Si}) Noise = 270 e rms (Si) Noise = 120 e rms (Si) Cf = 4.7 pF, Cf = 0.47 pF, • High Count Rate and/or High Resolution Rf = 10 MQ Rf=1.0GQ eV-5092 eV-5094 • High Performance/Cost Ratio Risetime = 12 ns Risetime = 45 ns • "Plug-in" Versatility Falltime = 85 us Falltime = 1200 us 100 to 1000 pF Sensitivity = 0.12 mv/fc Sensitivity = 0.9 mv/fc • Custom Hybrid Design Capability Noise = 290 e rms (Si) Noise = 220 e rms (Si) Cf = 4.7 pF Cf = 1.0 pF Rf = 10MQ Rf =500 MQ TEL-1-(412) 352-5288 FAX-1-(412) 352-4980 Single Channel Preamplifier Hybrid Circuit Selection Chart 375 Saxonburg Blvd., Saxonburg, PA 16056 USA IV CERN Courier, January/February 1995 iliiiiiilil 11 aining and installation services will be available in the CES tradition as for the FIC 8234 systems. First systems will be available in the second quarter 95 (April-May). Because of the interest already expressed, reserve quickly for early delivery ! Complete turn-key systems consist of: • RTPC 8067 equipped with: - 66 MHz Power-PC 603 or 100 MHz Power-PC 604. - 32 Mbytes RAM, 1 Mbyte FEPROM, Ethernet, SCSI II, PCI Mezzanine slot for ATM, FDDI, fibre channel, custom designed PMC cards, etc... - Sparse Data Scan Processor - VME D64 Block Mover and optional VSB • DSK 8133 340 Mbytes or 1 Gbyte disk • Lynx 2.2 development system with C compiler, TCP-IP, NFS • Complete System Support Package for Physics with: - VIC support (VIC 8250 and VIC 8251) - FDL support (FDL 8050) - CAMAC support (CBD 8210 and VCC 2117) - FASTBUS support (FVSBI9210 and VFI9214). • Uses the existing CAMAC unchanged & preserves the VAX VMS The System Crate Replacement consists of a VME minicrate linked to the Code host via an Ethernet TCP/IP connection and to the CAMAC CCA2s of the • Complete black box system with all the required hardware and front-end crates via a VME CAMAC Branch Driver. software module • Number of CAMAC branches can be increased to a maximum of 4 If your host per Block Box by plug-in hardware and software system has • Unlimited number of SCR 5310 driven by the same host via a network network connection connectivity, • Distance between SCR and hosts is effectively unlimited you already • Possibility to add further hosts, to produce a full multi-host system. have inter­ • Installation and training service face to the • Multiple Host environments (DEC, HP, SUN,...) SCR. • Software Transition Module exists for different hosts: VAX / VMS, UNIX-based systems and OS-9 based systems The SCR has been designed as a completely transparent System Crate VME Black Box VME Minicrate Upgrade for experiments still using the System Crate approach, when a 68040 Processor Stand-alone TCP/IP complete front-end redesign is too expensive or when the existing Data Real-Time OS CAMAC Branch Driver Acquisition Software cannot be modified. It has the advantage that the existing FORTRAN code needs not be changed. The SCR's Software Transition Module adapts the ESONE Software Transition Module calls to the new hardware which slides in as a replacement of the Root Crate. CES, at the leading edge in system conception For any additional information about this product or our complete VIC, VME, CAMAC and FASTBUS line, do not hesitate to contact us. T3. VERSATILE LES FOR ME users have waited years for sophisticated, multi-input data acquisition modules. LeCroy's new 6U VME product line fulfills this need! Whether you are instrumenting a small or large experiment, LeCroy's products are the solution. For the first time, acquisition modules using the latest technology are available for applications including Time-of-Flight, Laser Chemistry, High Energy, Heavy Ion Nuclear Physics and other fields.
Recommended publications
  • Magnetic Vortices in Gauge/Gravity Duality
    Magnetic Vortices in Gauge/Gravity Duality Dissertation by Migael Strydom Magnetic Vortices in Gauge/Gravity Duality Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Migael Strydom aus Pretoria M¨unchen, den 20. Mai 2014 Dissertation submitted to the faculty of physics of the Ludwig{Maximilians{Universit¨atM¨unchen by Migael Strydom supervised by Prof. Dr. Johanna Karen Erdmenger Max-Planck-Institut f¨urPhysik, M¨unchen 1st Referee: Prof. Dr. Johanna Karen Erdmenger 2nd Referee: Prof. Dr. Dieter L¨ust Date of submission: 20 May 2014 Date of oral examination: 18 July 2014 Zusammenfassung Wir untersuchen stark gekoppelte Ph¨anomene unter Verwendung der Dualit¨at zwischen Eich- und Gravitationstheorien. Dabei liegt ein besonderer Fokus einer- seits auf Vortex L¨osungen, die von einem magnetischem Feld verursacht werden, und andererseits auf zeitabh¨angigen Problemen in holographischen Modellen. Das wichtigste Ergebnis ist die Entdeckung eines unerwarteten Effektes in einem ein- fachen holografischen Modell: ein starkes nicht abelsches magnetisches Feld verur- sacht die Entstehung eines Grundzustandes in der Form eines dreieckigen Gitters von Vortices. Die Dualit¨at zwischen Eich- und Gravitationstheorien ist ein m¨achtiges Werk- zeug welches bereits verwendet wurde um stark gekoppelte Systeme vom Quark- Gluonen Plasma in Teilchenbeschleunigern bis hin zu Festk¨orpertheorien zu be- schreiben. Die wichtigste Idee ist dabei die der Dualit¨at: Eine stark gekoppelte Quantenfeldtheorie kann untersucht werden, indem man die Eigenschaften eines aus den Einsteinschen Feldgleichungen folgenden Gravitations-Hintergrundes be- stimmt. Eine der Gravitationstheorien, die in dieser Arbeit behandelt werden, ist ei- ne Einstein{Yang{Mills Theorie in einem AdS{Schwarzschild Hintergrund mit SU(2)-Eichsymmetrie.
    [Show full text]
  • Presentation Kluwer Online
    Presentation Kluwer Online http://www.kluweronline.com By Walter Montenarie Licensing Manager [email protected] Kluwer Online http://www.kluweronline.com Contents Presentation • Introduction • e-Journals • e-Reference Works • e-Books • Consortium contracts Introduction www.kluweronline.com • Who are we? Online Journals • Facts & figures Reference • Imprints Works • Nobel Prize winners • Current issues eBooks Consortium Contracts Kluwer Online Accelerating the World of Research [email protected] Introduction – Who are we? http://www.kluweronline.com Kluwer Academic Publishers • An international publishing organization active across a broad spectrum of academic and professional fields. • Our goal is provide dedicated service to researchers, scientists and academics through high-quality STM print and online content distribution. • We are involved with sharing scientific content through the WHO’s HINARI and AGORA programs. • We have a prestigious Russian program acquired as part of our 1998 purchase of Plenum Publishers. Introduction – Facts & Figures http://www.kluweronline.com Kluwer Academic Publishers • 1200 New (print) books per year • 13,000 Backlist book titles • More than 200 book series • Printing on Demand • Over 650 Print/Electronic journals • 750+ e-Book Titles (100 new each year) • 7 e-Reference Works Introduction – Imprints http://www.kluweronline.com Publishers Imprints: • Kluwer Academic Publishers • Kluwer Academic/Plenum Publishers • Kluwer Academic/Human Sciences Press • Kluwer Academic/Baltzer Science Publishers
    [Show full text]
  • Appeal from the Nuclear Age Peace Foundation to End the Nuclear Weapons Threat to Humanity (2003)………………………………………..……...26
    Relevant Appeals against War and for Nuclear Disarmament from Scientific Networks 1945- 2010 Reiner Braun/ Manuel Müller/ Magdalena Polakowski Russell-Einstein-Manifesto (1955)……………..…..1 The first Pugwash Conferenec (1957)………..……4 The Letter from Bertrand Russell to Joseph Rotblat (1956)………………………………..……...6 „Göttinger 18“ (1957)…………………………..…..8 Hiroshima Appeal (1959)………………………..…9 Linus Pauling (1961)…………………………..…..10 The Call to Halt the Nuclear Arms Race (1980)………………..…..11 The Göttingen Draft Treaty to Ban Space Weapons (1984)…………………………………………….....15 Appeal by American Scientists to Ban Space Weapons (1985)………………………………..…..16 The Hamburg Disarmament Proposals (1986)…………………………………………..…...17 Hans A. Bethe to Mr. President (1997)………..…18 Appeal from Scientists in Japan (1998)……….....20 U.S.Nobel laureates object to preventive attack on Iraq (2003)……………………………………...….25 Appeal from the Nuclear Age Peace Foundation to end the nuclear weapons threat to humanity (2003)………………………………………..……...26 Appeal to support an International Einstein Year (2004)……………………………………………….28 Scientists for a Nuclear Weapons Free World, INES (2009)…………………………..……………31 Milan Document on Nuclear Disarmament (2010)……………………..34 Russell-Einstein-Manifesto (1955) 1 Russell-Einstein-Manifesto (1955) In the tragic situation which confronts humanity, we feel that scientists should assemble in conference to appraise the perils that have arisen as a result of the development of weapons of mass destruction, and to discuss a resolution in the spirit of the appended draft. We are speaking on this occasion, not as members of this or that nation, continent, or creed, but as human beings, members of the species Man, whose continued existence is in doubt. The world is full of conflicts; and, overshadowing all minor conflicts, the titanic struggle between Communism and anti-Communism.
    [Show full text]
  • Electroweak Symmetry Breaking (Historical Perspective)
    Electroweak Symmetry Breaking (Historical Perspective) 40th SLAC Summer Institute · 2012 History is not just a thing of the past! 2 Symmetry Indistinguishable before and after a transformation Unobservable quantity would vanish if symmetry held Disorder order = reduced symmetry 3 Symmetry Bilateral Translational, rotational, … Ornamental Crystals 4 Symmetry CsI Fullerene C60 ball and stick created from a PDB using Piotr Rotkiewicz's [http://www.pirx.com/iMol/ iMol]. {{gfdl}} Source: English Wikipedia, 5 Symmetry (continuous) 6 Symmetry matters. 7 8 Symmetries & conservation laws Spatial translation Momentum Time translation Energy Rotational invariance Angular momentum QM phase Charge 9 Symmetric laws need not imply symmetric outcomes. 10 symmetries of laws ⇏ symmetries of outcomes by Wilson Bentley, via NOAA Photo Library Photo via NOAA Wilson Bentley, by Studies among the Snow Crystals ... CrystalsStudies amongSnow the ... 11 Broken symmetry is interesting. 12 Two-dimensional Ising model of ferromagnet http://boudin.fnal.gov/applet/IsingPage.html 13 Continuum of degenerate vacua 14 Nambu–Goldstone bosons V Betsy Devine Yoichiro Nambu �� 2 Massless NG boson 1 Massive scalar boson NGBs as spin waves, phonons, pions, … Jeffrey Goldstone 15 Symmetries imply forces. I: scale symmetry to unify EM, gravity Hermann Weyl (1918, 1929) 16 NEW Complex phase in QM ORIGINAL Global: free particle Local: interactions 17 Maxwell’s equations; QED massless spin-1 photon coupled to conserved charge no impediment to electron mass (eL & eR have same charge) James Clerk Maxwell (1861/2) 18 19 QED Fermion masses allowed Gauge-boson masses forbidden Photon mass term 1 2 µ 2 mγ A Aµ violates gauge invariance: AµA (Aµ ∂µΛ) (A ∂ Λ) = AµA µ ⇥ − µ − µ ⇤ µ Massless photon predicted 22 observed: mγ 10− me 20 Symmetries imply forces.
    [Show full text]
  • Particle Physics Detector in Space
    Particle physics detector in space QED IN BULGARIA STARING AT THE SUN HADRON THERAPY Researchers are still pushing at How will Gran Sasso's Borexino The Proton-Ion Medical Machine the frontiers of QED, as a workshop experiment work and what will it tell Study is exploring how particle physics in Bulgaria revealed us about the nature of neutrinos? can benefit medical treatment All the F.W. Bel I (s) and Whistles. RS -232I/O Port Built-in Rechargeable Battery Min/Maxl Peak Hold 0.25% DC Accuracy Frequency Range DC-20 kHz The New6000Series Gauss/Teslameter Delivers Laboratory Accuracy in a Portable Package You spoke and we listened! The New Model 6010 is the As with all F.W. Bell products, you can expect a superior latest development in the measurement of magnetic flux level of performance, satisfaction and support that can come density using F.W. Bell's state-of-the-art Hall-effect only from a world leader. Look to F.W. Bell when quality and technology. performance matter most. The Model 6010 performs Magnetic field measurements Act Now! from zero to 300 kG (30 T) over 6 ranges with a resolution Special Introductory Free Probe Offer! of 1 mG (0.1 JJT). The Model 6010 measures both DC & Call Today at (407) 678-6900 USA or True RMS AC magnetic fields, at frequencies up to 20 kHz, Go to the Web! www.fwbell.com/html/cerncourier.html with a basic DC accuracy of 0.25%. The Model 6010 provides readings in Gauss, Tesla & Ampere/Meters. The new 6000 Series Hall-effect probe features F.W.
    [Show full text]
  • Topological Matter and Phases: the Nobel Prize in Physics 2016
    Topological Matter and Phases: the Nobel Prize in Physics 2016 Luca Salasnich Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universit`adi Padova MP5, Padova, December 13, 2016 Summary Nobel in Physics 2016: Thouless, Haldane and Kosterlitz Bosons and fermions Superconductivity and superfluidity Topology in Physics: quantized vortices Bose-Einstein condensation and Mermin-Wagner theorem 2D systems: topological phase transition of Kosterlitz-Thouless Research activity in our Department on topological matter Conclusions Nobel in Physics 2016: Thouless, Kosterlitz and Haldane The Nobel Prize in Physics 2016 was divided, one half awarded to David J. Thouless, the other half jointly to F. Duncan M. Haldane and J. Michael Kosterlitz ”for theoretical discoveries of topological phase transitions and topological phases of matter”. Nobel in Physics 2016: Thouless, Kosterlitz and Haldane The Nobel winners have used advanced mathematical methods to explain strange phenomena in unusual phases (or states) of matter, such as superconductors, superfluids or thin magnetic films. Kosterlitz (Brown Univ) and Thouless (Washington Univ) have studied phenomena that arise in a flat world on surfaces or inside extremely thin layers that can be considered two-dimensional. Haldane (Princeton Univ) has also studied matter that forms threads so thin they can be considered one-dimensional. Bosons and fermions Any particle has an intrinsic angular momentum, called spin S~ = (Sx , Sy , Sz ), characterized by two quantum numbers s ed ms , where for s fixed one has ms = −s, −s +1, ..., s − 1, s, and in addition Sz = ms ~ , with ~ (1.054 · 10−34 Joule×seconds) the reduced Planck constant. All the particles can be devided into two groups: – bosons, characterized by an integer s: s =0, 1, 2, 3, ..
    [Show full text]
  • 6.10 Books and Arts MH
    books and arts as is the description of the nature of the BCS ally, a lot. Far too often the history of science on population cycles may find that it does theory (with a debt here to Victor Weisskopf, confines itself to bare facts — when it pays not cover the literature as fully as they might whose explanation is quoted). attention to them at all. I like in a book with ambitions of providing The story thereafter becomes sketchy Philip W. Anderson is in the Department of a synthesis of the field. I preferred the indeed,and misses many vital points.I might Physics, Princeton University, Princeton, second part of the book, which covers both suggest that the authors’ relative unfamili- New Jersey 08544-0708, USA. phenomenological (time series-based) and arity with the anglophone world, and their mechanistic modelling — the latter more weakness in theory, begin here to warp the fully than the former. coverage. There is emphasis on Pierre-Gilles The section on case examples is good de Gennes’group in France,with its remark- for the systems that Turchin has worked on able collective ethos and a significant num- The rise and fall himself, but is rather shallow for some of the ber of detailed applications of the BCS ideas other systems described, a good exception to its credit, but does this work stand out of populations being the chapter on grouse.However,I think so much relative to many things that at the Complex Population Dynamics: A that this book contributes profoundly to time seemed more important? And I cannot Theoretical/Empirical Synthesis the literature, in particular with its emphasis let pass the authors’ failure to note that by Peter Turchin on integrating statistical analysis, theoretical although Alex Müller’s great discovery of Princeton University Press: 2003.
    [Show full text]
  • Physics Illinois News
    PHYSICS ILLINOIS NEWS THE DEPARTMENT OF PHYSICS AT THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN • 2003 NUMBER 2 Tony Leggett Named 2003 Nobel Laureate in Physics directions for research in the quantum transmitted this information to several When Leggett came to Illinois physics of macroscopic systems and theorists, including Leggett. According as the John D. and Catherine T. the use of condensed matter systems to Richardson, Leggett came up with MacArthur Chair in 1983, he was to test the foundations of quantum the explanation in less than three already widely recognized as a world mechanics. He is a master at under- weeks, working out the complete leader in the theory of low-tempera- standing how the most fundamental theory from their data. ture physics. According to Ralph laws of nature—the weird world of That discovery was indeed worthy Simmons, professor emeritus and head quantum mechanics that tells us how of a Nobel Prize, and in 1996, the of the Department of Physics at that atoms work—apply to the everyday award was given to the original three time, the MacArthur Foundation had world we live in. He has added experimenters. In the announcement settled on 10 universities that were to immeasurably to the rich intellectual of the 1996 Nobel Prize in Physics, be given endowments for professor- development of condensed matter Leggett was cited for assisting the prize ships. The University of Illinois was physics at the University of Illinois, winners in their interpretation of the one of only two public universities and he has unlocked the door to experiments that led to a breakthrough on the list.
    [Show full text]
  • James W. Rohlf Boston University
    Institute for Theoretical and Experimental Physics, Moscow, 3 December 2003 20 The Quest for 10− Meters James W. Rohlf Boston University Rohlf/ITEP – p.1/76 ITEP Forces and Distance Rohlf/ITEP – p.2/76 ITEP Discovery of the electron 1897 J. J. Thompson ...birth of the spectrometer! Note: The charge to mass depends on the speed, which is hard to measure! The ingenuity of the experiment was to add a magnetic field to cancel the electric deflection. Rohlf/ITEP – p.3/76 ITEP Electron e/m J.J. Thomson The electron gets acceleration 2 vy vyvx vx tan θ a = t = L = L with B field on and no deflection, E vx = B e a Etanθ m = E = LB2 E is field that produces deflection θ B is field that produces no deflection. Rohlf/ITEP – p.4/76 ITEP Classical electron radius Big trouble at a distance where electrostatic potential energy exceeds electron mass energy: ke2 2 r > mc This occurs when ke2 1:44 eV nm 15 r < = · 3 10− m mc2 0:511 MeV ' × Rohlf/ITEP – p.5/76 ITEP Rutherford scattering 1909 The detector consisted of a fluorescent screen and Hans Geiger looking through a microscope for light flashes. This experience is, no doubt, what motivated him to invent the Geiger counter! Rohlf/ITEP – p.6/76 ITEP Cross section definition transition rate σ = incident flux effective area of target Examples: 28 2 nuclear barn (b) = 10− m ∼ pp (high energy) 50 mb ∼ W/Z0 discovery at SPS nb ∼ rare processes at LHC fb ∼ Rohlf/ITEP – p.7/76 ITEP Rutherford scattering dσ 2 ~c 2 1 d cos θ α (E ) (1 cos θ)2 ∼ k − (∆p)2 = 2(mv)2(1 cos θ) − dσ = 2πbdb Can only happen if: force is 1/r2 • nucleus is pointlike • J=1, m=0 photon • Rohlf/ITEP – p.8/76 ITEP Davisson-Germer discovering electron waves “We have become accustomed to think of the atom as rather like a solar system..
    [Show full text]
  • Read the Full Pdf Issue
    the SPSVolume XLIX, Issue 4 ObserverWINTER 2015-16 FAILURE AS LONG AS YOU LEARN, YOU CAN'T FAIL Space is Hard WHAT TODAY’S SPACEFARERS CAN LEARN FROM NASA’S MISTAKES Epic Physics Fails SPS MEMBERS SHARE THEIR MOST EPIC PHYSICS FAILS the TABLE OF CONTENTS SPS Observer WINTER 2015-16 • VOLUME XLIX, ISSUE 4 Guest Editor Karen Williams FEATURES Managing Editor Devin Powell Navigating Failure Navigating Failure ............................ Copy Editor 15 Superconductivity: A Superlatively Difficult Puzzle ... 17 Cynthia Freeman Space is Hard . 19 Art Director The Life of the LHC and the Death of the SSC ...... 21 Tracy Nolis-Schwab Epic Physics Fails ..........................16-23 Layout Designer PhysCon 2016 Mike Wernert Prepping for Congress . 24 SPS President Come to Congress! . 27 DJ Wagner, Grove City College SPS Director DEPARTMENTS Sean Bentley LETTER My Successful Null Result ...................... 05 PATHWAYS Accessing My Creativity App ................... 06 STARS Spring Award Deadlines ....................... 08 1 Physics Ellipse SPS Outstanding Chapter Advisor Named ........ 08 College Park, MD 20740 PHYSICS PUZZLER 301.209.3007 (tel) Sound Reasons .............................. 09 301.209.0839 (fax) INTERACTIONS [email protected] SPS Chapters in Action ........................ 11 www.spsnational.org IN THE ZONE Regional SPS Highlights ....................... 28 MEETING NOTES On the Shoulders of Giants ..................... 30 ON THE COVER An Experience Catered to Undergraduates ........ 31 The Mars Climate Orbiter A Delegate for US Physics ..................... 32 disintegrated in the Martian Beers, Bees, and Becoming a Better Scientist ...... 33 atmosphere because a subcon- tractor programmed its thrusters FEEDBACK in imperial units instead of the Find SPS on: What Does It Mean to Be a Physicist? ............. 34 metric units NASA was using.
    [Show full text]
  • Nobel Laureates with Their Contribution in Biomedical Engineering
    NOBEL LAUREATES WITH THEIR CONTRIBUTION IN BIOMEDICAL ENGINEERING Nobel Prizes and Biomedical Engineering In the year 1901 Wilhelm Conrad Röntgen received Nobel Prize in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him. Röntgen is considered the father of diagnostic radiology, the medical specialty which uses imaging to diagnose disease. He was the first scientist to observe and record X-rays, first finding them on November 8, 1895. Radiography was the first medical imaging technology. He had been fiddling with a set of cathode ray instruments and was surprised to find a flickering image cast by his instruments separated from them by some W. C. Röntgenn distance. He knew that the image he saw was not being cast by the cathode rays (now known as beams of electrons) as they could not penetrate air for any significant distance. After some considerable investigation, he named the new rays "X" to indicate they were unknown. In the year 1903 Niels Ryberg Finsen received Nobel Prize in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science. In beautiful but simple experiments Finsen demonstrated that the most refractive rays (he suggested as the “chemical rays”) from the sun or from an electric arc may have a stimulating effect on the tissues. If the irradiation is too strong, however, it may give rise to tissue damage, but this may to some extent be prevented by pigmentation of the skin as in the negro or in those much exposed to Niels Ryberg Finsen the sun.
    [Show full text]
  • The Last Classical Physicist
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Stephen Ducharme Publications Research Papers in Physics and Astronomy 9-2007 Vitaly Ginzburg: The Last Classical Physicist Vladimir Fridkin Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia Stephen Ducharme University of Nebraska, [email protected] Wolfgang Kleemann University Duisburg-Essen, Duisburg, Germany, [email protected] Yoshihiro Ishibashi Nagoya University, Japan Follow this and additional works at: https://digitalcommons.unl.edu/physicsducharme Part of the Physics Commons Fridkin, Vladimir; Ducharme, Stephen; Kleemann, Wolfgang; and Ishibashi, Yoshihiro, "Vitaly Ginzburg: The Last Classical Physicist" (2007). Stephen Ducharme Publications. 49. https://digitalcommons.unl.edu/physicsducharme/49 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Stephen Ducharme Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Ferroelectrics , 354 :1–2 (2007), pp. 1–2; doi 10.1080/00150190701455054 Copyright © 2007 Taylor & Francis Group, LLC. Used by permission. Vitaly Ginzburg: The Last Classical Physicist (Guest Editorial) It is a great honor and responsibility to be Guest Editors for the special issue of Ferroelectrics , dedicated to the 90th Birthday of Nobel Prize Winner Prof. Vitaly Ginzburg. We have entitled our Guest Editorial “The Last Classical Physicist” because his creative work practically covers all regions of the modern physics: astronomy, astrophysics, cosmic rays, high spin elementary particles, quantum electrodynamics, solid state physics, including superconductivity and superfluidity, superdiamagnetism and ferrotoroics, crystallooptics and last (but for this journal not least) the theory of ferroelectricity and soft mode conception.
    [Show full text]