Physics Illinois News

Total Page:16

File Type:pdf, Size:1020Kb

Physics Illinois News PHYSICS ILLINOIS NEWS THE DEPARTMENT OF PHYSICS AT THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN • 2003 NUMBER 2 Tony Leggett Named 2003 Nobel Laureate in Physics directions for research in the quantum transmitted this information to several When Leggett came to Illinois physics of macroscopic systems and theorists, including Leggett. According as the John D. and Catherine T. the use of condensed matter systems to Richardson, Leggett came up with MacArthur Chair in 1983, he was to test the foundations of quantum the explanation in less than three already widely recognized as a world mechanics. He is a master at under- weeks, working out the complete leader in the theory of low-tempera- standing how the most fundamental theory from their data. ture physics. According to Ralph laws of nature—the weird world of That discovery was indeed worthy Simmons, professor emeritus and head quantum mechanics that tells us how of a Nobel Prize, and in 1996, the of the Department of Physics at that atoms work—apply to the everyday award was given to the original three time, the MacArthur Foundation had world we live in. He has added experimenters. In the announcement settled on 10 universities that were to immeasurably to the rich intellectual of the 1996 Nobel Prize in Physics, be given endowments for professor- development of condensed matter Leggett was cited for assisting the prize ships. The University of Illinois was physics at the University of Illinois, winners in their interpretation of the one of only two public universities and he has unlocked the door to experiments that led to a breakthrough on the list. discovery, that greatest of all human in low-temperature physics. “When the Department got an endeavors.” In his statement to the media on opportunity to compete for the Anthony J. Leggett, the John D. and The decisive theory explaining October 7, Leggett said that he had MacArthur professorship awarded to Catherine T. MacArthur Professor and how the helium atoms interact and are thought about winning a Nobel Prize this campus, we thought at once of Center for Advanced Study Professor ordered in the superfluid state was some day, but, “realistically, I gave Tony Leggett,” Simmons explained. of Physics, has been awarded the 2003 formulated while Leggett was working myself a 10 percent chance.” He noted “I called him about our enthusiasm to Nobel Prize in Physics. He shares the at the University of Sussex in England. that his work exploited and applied nominate him, and he had no ques- prize “for pioneering contributions to Theorists had long expected that 3He the Nobel Prize-winning work on tions about the quality of the Depart- the theory of superconductors and would become a superfluid and superconductivity by John Bardeen ment. He did comment, however, that superfluids” with Alexei Abrikosov predicted the transition temperature. and colleagues Leon Cooper and he’d heard that all the magnificent elm of Argonne National Laboratory and In 1972, Douglas Osheroff, Robert Schrieffer, adding, “I’m sure trees were gone. Fortunately, he and Vitaly Ginzburg of the Lebedev Robert Richardson, and David Lee at without my postdoctoral year here, his family consented to visit anyway. Physical Institute in Moscow. Cornell discovered the superfluid state this work would never have been We have been extremely fortunate, In her announcement on of 3He through their experiments with done.” (Leggett worked with David ever since, to enjoy his many October 7, 2003, University of Illinois nuclear magnetic resonance. Because Pines as a postdoctoral research contributions to departmental life.” Chancellor Nancy Cantor stated that there were major aspects of their data associate in 1964–65.) “Tony Leggett has shaped our under- that they did not understand, they standing of superfluids and set Physics Van Milestone—Almost 50,000 Smiles and a Van of Its Own Now in its 10th year, the Physics Van as far north as Madison, Wisconsin (http://van.hep.uiuc.edu/) is one (where they performed—and won of the University of Illinois’ most third place!—at the University of successful outreach programs. Wisconsin’s Engineering Expo), and More than 60 undergraduate student as far west as Snowmass, Colorado volunteers from physics and engineer- (where they showed the high-energy ing spend countless hours each physicists attending the 2001 semester in a traveling science road Snowmass Conference how to bring show, bringing the wonder of science to the public). They even had scientific discovery to children. a two-day gig at the Adler Planetarium The Van will soon present Show in Chicago in May, and they are an #400. To date, more than 47,000 annual summer attraction at the youngsters, parents, and teachers have University of Illinois tent at the experienced the adventure that is Illinois State Fair. “doing physics,” thanks to the ingenu- Recently, two of the Van ity, dedication, and plain hard work volunteers—Sara W. Pogatshnik and of these outstanding students. Jonathan D. Wilson—were recognized The College of Engineering with the 2003 Physics Student recently recognized the importance Outreach Award. The award, which of this innovative program by giving was instituted in the mid-1990s, is the department its very own van. given annually to one or two students No longer will the Van crew have to who have shown a special interest and load and unload a vehicle from the aptitude for sharing their love of University motor pool for every show. physics with children. Every week throughout the In addition to the live shows, Van academic year, Van volunteers travel volunteers also staff a web-based “Ask to elementary and middle schools the Physics Van” service, answering Tim McArdle, a student coordinator of the Physics Van, demonstrates how nitrogen throughout Illinois. They have been changes from a liquid into a gas—with a giant soap explosion. continued on page 12 2 PHYSICS ILLINOIS NEWS • 2003 NUMBER 2 J. Leggett, John D. and Catherine T. aware of, undoubtedly I am overlook- TAs and RAs. These increases were MacArthur Professor of Physics and ing numerous other alumni achieve- essential to retaining our competitive- Center for Advanced Study faculty ments. Do keep me informed of your ness, given the salary freeze of the member, had won the 2003 Nobel activities, achievements, and awards. preceding year. We were also able to Prize in Physics. The news was Another success in the past make a superb new hire in the atomic, electrifying, and it is a fitting tribute academic year was the completion in molecular, optical area, thereby to an extraordinary physicist and a early summer 2003 of the $3 million expanding our thrust in quantum colleague who is generous with his remodeling project for the top five information research. Additional time and ideas with faculty, postdocs, floors of the Engineering Sciences faculty searches are underway this year. and students alike. The next day at Building (ESB), the high-rise section Sustaining the excellence and the start of Tony’s class, “Supercon- of the former Coordinated Science competitiveness of the Department of ductivity: Ancient and Modern,” his Laboratory. The remodeling converted Physics in the future will require new Letter from students paid him a heartfelt tribute dysfunctional space assigned to sources of funds and additional space. by presenting him their writing Physics many years ago into a bright There is little hope that the long-term the Head pens—a moment inspired by a scene and interactive new home for the trend of decreasing state funding for in the movie A Beautiful Mind. condensed matter theory group— the University will reverse or even halt. We have focused this edition of Physics The faculty’s harvest of awards, faculty, postdocs, and students alike. Private gifts, named professorships Illinois News on some of our vibrant prizes, and accomplishments over The remodeling also provides larger and endowed chairs, undergraduate educational initiatives and outreach the past year has been a rich one. and more attractive space for all of our scholarships, stipends for undergradu- programs. I’m sure you will be proud In addition to Nobel and Wolf prizes junior- and senior-level laboratory ate summer research, and graduate of the efforts that your department is won by Tony Leggett, Dale Van courses, including a new spectroscopy fellowships will all be needed in much making to ensure that all our students Harlingen was chosen for a College of lab course. Areas that have opened up greater measure than in the past. have the opportunity to succeed and Engineering Willet Professorship and in Loomis by these moves to ESB are As we will rapidly saturate the that they are well prepared for their elected to the National Academy of being put to new uses, providing badly newly available space in Loomis, it is future careers. We also take as part of Sciences. Jim Wolfe was recognized needed research space for existing and apparent that additional space will our mission encouraging more young with the APS Frank Isakson Prize. new faculty members. soon be needed. The best solution people to consider scientific and Gordon Baym was invested as a In the midst of our successes, appears to be a second building, in technical pursuits and making science George and Ann Fisher Distinguished however, is the ongoing concern about close proximity to Loomis, containing more accessible to the general public. Professor of Engineering, and Naomi our financial well-being. A second year a mix of teaching and research func- In other good news, our incoming Makins and Ali Yazdani were named of reductions in State of Illinois’ tions. But funding for an adjunct undergraduate and graduate student Willett Faculty Scholars. These are just recurring funding for the University building is unlikely to come from numbers are up substantially; the Fall a few highlights of the many junior of Illinois has created budgetary crises the state alone.
Recommended publications
  • Magnetic Vortices in Gauge/Gravity Duality
    Magnetic Vortices in Gauge/Gravity Duality Dissertation by Migael Strydom Magnetic Vortices in Gauge/Gravity Duality Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Migael Strydom aus Pretoria M¨unchen, den 20. Mai 2014 Dissertation submitted to the faculty of physics of the Ludwig{Maximilians{Universit¨atM¨unchen by Migael Strydom supervised by Prof. Dr. Johanna Karen Erdmenger Max-Planck-Institut f¨urPhysik, M¨unchen 1st Referee: Prof. Dr. Johanna Karen Erdmenger 2nd Referee: Prof. Dr. Dieter L¨ust Date of submission: 20 May 2014 Date of oral examination: 18 July 2014 Zusammenfassung Wir untersuchen stark gekoppelte Ph¨anomene unter Verwendung der Dualit¨at zwischen Eich- und Gravitationstheorien. Dabei liegt ein besonderer Fokus einer- seits auf Vortex L¨osungen, die von einem magnetischem Feld verursacht werden, und andererseits auf zeitabh¨angigen Problemen in holographischen Modellen. Das wichtigste Ergebnis ist die Entdeckung eines unerwarteten Effektes in einem ein- fachen holografischen Modell: ein starkes nicht abelsches magnetisches Feld verur- sacht die Entstehung eines Grundzustandes in der Form eines dreieckigen Gitters von Vortices. Die Dualit¨at zwischen Eich- und Gravitationstheorien ist ein m¨achtiges Werk- zeug welches bereits verwendet wurde um stark gekoppelte Systeme vom Quark- Gluonen Plasma in Teilchenbeschleunigern bis hin zu Festk¨orpertheorien zu be- schreiben. Die wichtigste Idee ist dabei die der Dualit¨at: Eine stark gekoppelte Quantenfeldtheorie kann untersucht werden, indem man die Eigenschaften eines aus den Einsteinschen Feldgleichungen folgenden Gravitations-Hintergrundes be- stimmt. Eine der Gravitationstheorien, die in dieser Arbeit behandelt werden, ist ei- ne Einstein{Yang{Mills Theorie in einem AdS{Schwarzschild Hintergrund mit SU(2)-Eichsymmetrie.
    [Show full text]
  • 2007-2008 Physics at Brown Newsletter
    Physics at Brown NEWS FOR ALUM N I an D FRIE N DS 2007 ISSUE GREETINGS FROM THE CHAIR - SP RING 2008 elcome to another issue of the Brown Physics newsletter. the rank of Associate Professor with tenure. We also report on WI wrote three years ago, during my first term as the some notable faculty achievements for the past year. department chair--with a committed faculty, dedicated staff, enthusiastic students, supportive administration, and engaged e continue the tradition of highlighting the research of alumni and friends--that the future of physics at Brown looked Wour 2007 Galkin Foundation Fellow on page 2. Also bright. Many things have taken place since then. Here we the effort in enriching our physics instruction continues. Three highlight some of the activities of the past year. new courses are offered this year and proposals for three new physics concentrations are under way. Other noteworthy 007 marked the 50th anniversary of the BCS Theory activities include WiSE, Poster Session, UTRA Awards, 2of Superconductivity. We honored Prof. Leon Resource Center, etc. In addition, community outreach Cooper with a two-day symposium on April remains a priority for the Department with a weekly 12-13. A brief description of this event is open house at Ladd and a greatly expanded five- provided on page 3. year NSF supported GK-12 program. e also report on the establishment hanks to a generous gift from his family, an Wof the Institute for Molecular and TAnthony Houghton Prize will be awarded Nanoscale Innovation, which represents an annually for the best theoretical thesis.
    [Show full text]
  • Presentation Kluwer Online
    Presentation Kluwer Online http://www.kluweronline.com By Walter Montenarie Licensing Manager [email protected] Kluwer Online http://www.kluweronline.com Contents Presentation • Introduction • e-Journals • e-Reference Works • e-Books • Consortium contracts Introduction www.kluweronline.com • Who are we? Online Journals • Facts & figures Reference • Imprints Works • Nobel Prize winners • Current issues eBooks Consortium Contracts Kluwer Online Accelerating the World of Research [email protected] Introduction – Who are we? http://www.kluweronline.com Kluwer Academic Publishers • An international publishing organization active across a broad spectrum of academic and professional fields. • Our goal is provide dedicated service to researchers, scientists and academics through high-quality STM print and online content distribution. • We are involved with sharing scientific content through the WHO’s HINARI and AGORA programs. • We have a prestigious Russian program acquired as part of our 1998 purchase of Plenum Publishers. Introduction – Facts & Figures http://www.kluweronline.com Kluwer Academic Publishers • 1200 New (print) books per year • 13,000 Backlist book titles • More than 200 book series • Printing on Demand • Over 650 Print/Electronic journals • 750+ e-Book Titles (100 new each year) • 7 e-Reference Works Introduction – Imprints http://www.kluweronline.com Publishers Imprints: • Kluwer Academic Publishers • Kluwer Academic/Plenum Publishers • Kluwer Academic/Human Sciences Press • Kluwer Academic/Baltzer Science Publishers
    [Show full text]
  • J. Robert Schrieffer Strange Quantum Numbers in Condensed Matter
    Wednesday, May 1, 2002 3:00 pm APS Auditorium, Building 402, Argonne National Laboratory APS Colloquium home J. Robert Schrieffer Nobel Laureate National High Magnetic Field Laboratory Florida State University, Tallahassee [email protected] http://www.physics.fsu.edu/research/NHMFL.htm Strange Quantum Numbers in Condensed Matter Physics The origin of peculiar quantum numbers in condensed matter physics will be reviewed. The source of spin-charge separation and fractional charge in conducting polymers has to do with solitons in broken symmetry states. For superconductors with an energy gap, which is odd under time reversal, reverse spin-orbital angular momentum pairing occurs. In the fractional quantum Hall effect, quasi particles of fractional charge occur. In superfluid helium 3, a one-way branch of excitations exists if a domain wall occurs in the system. Many of these phenomena occur due to vacuum flow of particles without crossing the excitation of the energy gap. John Robert Schrieffer received his bachelor's degree from Massachusetts Institute of Technology in 1953 and his Ph.D. from the University of Illinois in 1957. In addition, he holds honorary Doctor of Science degrees from universities in Germany, Switzerland, and Israel, and from the University of Pennsylvania, the University of Cincinnati, and the University of Alabama. Since 1992, Dr. Schrieffer has been a professor of Physics at Florida State University and the University of Florida and the Chief Scientist of the National High Magnetic Field Laboratory. He also holds the FSU Eminent Scholar Chair in Physics. Before moving to Florida in 1991, he served as director for the Institute for Theoretical Physics from 1984-1989 and was the Chancellor's Professor at the University of California in Santa Barbara from 1984-1991.
    [Show full text]
  • Appeal from the Nuclear Age Peace Foundation to End the Nuclear Weapons Threat to Humanity (2003)………………………………………..……...26
    Relevant Appeals against War and for Nuclear Disarmament from Scientific Networks 1945- 2010 Reiner Braun/ Manuel Müller/ Magdalena Polakowski Russell-Einstein-Manifesto (1955)……………..…..1 The first Pugwash Conferenec (1957)………..……4 The Letter from Bertrand Russell to Joseph Rotblat (1956)………………………………..……...6 „Göttinger 18“ (1957)…………………………..…..8 Hiroshima Appeal (1959)………………………..…9 Linus Pauling (1961)…………………………..…..10 The Call to Halt the Nuclear Arms Race (1980)………………..…..11 The Göttingen Draft Treaty to Ban Space Weapons (1984)…………………………………………….....15 Appeal by American Scientists to Ban Space Weapons (1985)………………………………..…..16 The Hamburg Disarmament Proposals (1986)…………………………………………..…...17 Hans A. Bethe to Mr. President (1997)………..…18 Appeal from Scientists in Japan (1998)……….....20 U.S.Nobel laureates object to preventive attack on Iraq (2003)……………………………………...….25 Appeal from the Nuclear Age Peace Foundation to end the nuclear weapons threat to humanity (2003)………………………………………..……...26 Appeal to support an International Einstein Year (2004)……………………………………………….28 Scientists for a Nuclear Weapons Free World, INES (2009)…………………………..……………31 Milan Document on Nuclear Disarmament (2010)……………………..34 Russell-Einstein-Manifesto (1955) 1 Russell-Einstein-Manifesto (1955) In the tragic situation which confronts humanity, we feel that scientists should assemble in conference to appraise the perils that have arisen as a result of the development of weapons of mass destruction, and to discuss a resolution in the spirit of the appended draft. We are speaking on this occasion, not as members of this or that nation, continent, or creed, but as human beings, members of the species Man, whose continued existence is in doubt. The world is full of conflicts; and, overshadowing all minor conflicts, the titanic struggle between Communism and anti-Communism.
    [Show full text]
  • Brief Newsletter from World Scientific February 2017
    Brief Newsletter from World Scientific February 2017 Exclusive Interview with 2003 Nobel Laureate One of the Top Condensed Matter Theorists and World Scientific Author Anthony Leggett Sir Professor Anthony James Leggett is a distinguished physicist who was awarded the Nobel Prize in Physics in 2003 for his pioneering contributions to the theory of superconductors and superfluids. He is currently a professor at the University of Illinois at Urbana-Champaign. Prof Leggett gave a presentation at the 2016 APS March Meeting in Baltimore, USA on “Reflections on the past, present and future of condensed matter physics”. In a phone interview, he shared with us some of his thoughts and further musings on the future of condensed matter physics. Paradigm Shift and Our Quest for the Unknown Chad Hollingsworth Your talk at the APS March Meeting 2016 mentioned developments That probably depends on your current tenure status! Certainly, if that you classified as “paradigm shifts”. Are there any recent you have a secure, tenured job (as I have been fortunate enough to discoveries that you would classify as paradigm shifts? have for the last few decades), then I think most certainly it’s better Well, if we go slightly outside the area of condensed matter physics to explore the unknown. But, of course, I appreciate that in the current as it has been conventionally defined, then, undoubtedly, any employment situation, people who have not got a tenured job need revolution which overthrew the view of quantum mechanics as a to think about their future. This may well be a rather strong pressure complete account of the world would, I think, certainly qualify as a to basically explore the known further.
    [Show full text]
  • Arxiv:Quant-Ph/0101077 V1 17 Jan 2001 His Get When Rect W Y B Mals.” Cup of Ab of Miliar
    100 Years of the Quantum Max Tegmark Dept. of Physics, Univ. of Pennsylvania, Philadelphia, PA 19104; [email protected] John Archibald Wheeler Princeton University, Department of Physics, Princeton, NJ 08544; [email protected] (An abbreviated version of this article, with much better graphics, was published in the Feb. 2001 issue of Scientific American, p.68-75.) Abstract: As quantum theory celebrates its 100th birthday, spectacular successes are mixed with outstanding puzzles and promises of new technologies. This article reviews both the successes of quantum theory and the ongoing debate about its consequences for issues ranging from quantum computation to consciousness, parallel universes and the nature of physical reality. We argue that modern experiments and the discovery of decoherence have have shifted prevailing quantum inter- pretations away from wave function collapse towards unitary physics, and discuss quantum processes in the framework of a tripartite subject-object-environment decomposition. We conclude with some speculations on the bigger picture and the search for a unified theory of quantum gravity. \...in a few years, all the great physical constants will ever, this involved an assumption so bizarre that even have been approximately estimated, and [...] the only oc- he distanced himself from it for many years afterwards: cupation which will then be left to the men of science will that energy was only emitted in certain finite chunks, or be to carry these measurement to another place of deci- \quanta". Yet this strange assumption proved extremely mals." As we enter the 21st century amid much brouhaha successful. Inspired by Planck's quantum hypothesis, Pe- about past achievements, this sentiment may sound fa- ter Debye showed that the strange thermal behavior of miliar.
    [Show full text]
  • James Rainwater 1 9 1 7 — 1 9 8 6
    NATIONAL ACADEMY OF SCIENCES JAMES RAINWATER 1 9 1 7 — 1 9 8 6 A Biographical Memoir by VAL L. FITCH Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2009 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Courtesy AIP Emilio Segré Archives. JAMES RAINWATER December 9, 1917–May 31, 1986 BY VAL L . FITCH . I. RABI, THE COLUMBIA University physics department’s lead- Iing researcher, chairman, and then after his retirement, wise old man, disliked the notion that physicists had divided themselves into two groups: experimental and theoretical. “There is only Physics,” he said, “with a capital P.” His strong feeling always manifested itself in his insistence that those who did experimental theses have a rigorous grounding in theoretical subjects and that theorists know something about experiment. He had two outstanding examples of such people in the department. One was Willis Lamb, who had done his thesis with Robert Oppenheimer and after a series of notable theoretical papers had won the Nobel Prize for an experiment. Rabi never forgave Lamb for leaving Columbia and going back to his native California. And then there was Jim Rainwater, the subject of this memoir, who had done his thesis with John Dunning, a consummate experimental- ist, and had gone on to win the Nobel Prize for theoretical work. Rainwater spent his entire career at Columbia, first as a graduate student and then as a member of the faculty. He enjoyed Rabi’s highest accolades.
    [Show full text]
  • Guide to Wolfgang Kurt Hermann Panofsky Papers, 1932-2008 Collection SLAC003 SLAC National Accelerator Laboratory, Stanford University
    Guide to Wolfgang Kurt Hermann Panofsky Papers, 1932-2008 Collection SLAC003 SLAC National Accelerator Laboratory, Stanford University Contact Information: Archives, History & Records Office SLAC National Accelerator Laboratory 2575 Sand Hill Road MS97 Menlo Park, CA 94025 Phone: (650) 926-5376 Email: [email protected] URL: http://www.slac.stanford.edu/history/ ©2018 SLAC National Accelerator Laboratory. All rights reserved. Panofsky Papers Guide Contents Descriptive Summary...................................................................................................................... 2 Administrative Information ............................................................................................................ 2 Biographical Note ....................................................................................................................... 3 Scope and Content .................................................................................................................... 12 Arrangement ............................................................................................................................. 12 Related Material ........................................................................................................................ 21 1 Panofsky Papers Guide Descriptive Summary Title: Wolfgang Kurt Hermann Panofsky Papers, 1932-2008 Collection Number: SLAC003 Creator: Panofsky, Wolfgang Kurt Hermann Extent: 220 cubic feet Repository: Stanford University. SLAC National Accelerator Laboratory.
    [Show full text]
  • Electroweak Symmetry Breaking (Historical Perspective)
    Electroweak Symmetry Breaking (Historical Perspective) 40th SLAC Summer Institute · 2012 History is not just a thing of the past! 2 Symmetry Indistinguishable before and after a transformation Unobservable quantity would vanish if symmetry held Disorder order = reduced symmetry 3 Symmetry Bilateral Translational, rotational, … Ornamental Crystals 4 Symmetry CsI Fullerene C60 ball and stick created from a PDB using Piotr Rotkiewicz's [http://www.pirx.com/iMol/ iMol]. {{gfdl}} Source: English Wikipedia, 5 Symmetry (continuous) 6 Symmetry matters. 7 8 Symmetries & conservation laws Spatial translation Momentum Time translation Energy Rotational invariance Angular momentum QM phase Charge 9 Symmetric laws need not imply symmetric outcomes. 10 symmetries of laws ⇏ symmetries of outcomes by Wilson Bentley, via NOAA Photo Library Photo via NOAA Wilson Bentley, by Studies among the Snow Crystals ... CrystalsStudies amongSnow the ... 11 Broken symmetry is interesting. 12 Two-dimensional Ising model of ferromagnet http://boudin.fnal.gov/applet/IsingPage.html 13 Continuum of degenerate vacua 14 Nambu–Goldstone bosons V Betsy Devine Yoichiro Nambu �� 2 Massless NG boson 1 Massive scalar boson NGBs as spin waves, phonons, pions, … Jeffrey Goldstone 15 Symmetries imply forces. I: scale symmetry to unify EM, gravity Hermann Weyl (1918, 1929) 16 NEW Complex phase in QM ORIGINAL Global: free particle Local: interactions 17 Maxwell’s equations; QED massless spin-1 photon coupled to conserved charge no impediment to electron mass (eL & eR have same charge) James Clerk Maxwell (1861/2) 18 19 QED Fermion masses allowed Gauge-boson masses forbidden Photon mass term 1 2 µ 2 mγ A Aµ violates gauge invariance: AµA (Aµ ∂µΛ) (A ∂ Λ) = AµA µ ⇥ − µ − µ ⇤ µ Massless photon predicted 22 observed: mγ 10− me 20 Symmetries imply forces.
    [Show full text]
  • Particle Physics Detector in Space
    Particle physics detector in space QED IN BULGARIA STARING AT THE SUN HADRON THERAPY Researchers are still pushing at How will Gran Sasso's Borexino The Proton-Ion Medical Machine the frontiers of QED, as a workshop experiment work and what will it tell Study is exploring how particle physics in Bulgaria revealed us about the nature of neutrinos? can benefit medical treatment All the F.W. Bel I (s) and Whistles. RS -232I/O Port Built-in Rechargeable Battery Min/Maxl Peak Hold 0.25% DC Accuracy Frequency Range DC-20 kHz The New6000Series Gauss/Teslameter Delivers Laboratory Accuracy in a Portable Package You spoke and we listened! The New Model 6010 is the As with all F.W. Bell products, you can expect a superior latest development in the measurement of magnetic flux level of performance, satisfaction and support that can come density using F.W. Bell's state-of-the-art Hall-effect only from a world leader. Look to F.W. Bell when quality and technology. performance matter most. The Model 6010 performs Magnetic field measurements Act Now! from zero to 300 kG (30 T) over 6 ranges with a resolution Special Introductory Free Probe Offer! of 1 mG (0.1 JJT). The Model 6010 measures both DC & Call Today at (407) 678-6900 USA or True RMS AC magnetic fields, at frequencies up to 20 kHz, Go to the Web! www.fwbell.com/html/cerncourier.html with a basic DC accuracy of 0.25%. The Model 6010 provides readings in Gauss, Tesla & Ampere/Meters. The new 6000 Series Hall-effect probe features F.W.
    [Show full text]
  • C.V. De Anton Zeilinger
    Anton Zeilinger Élu Associé étranger le 8 décembre 2009 dans la section de Physique Anton Zeilinger, né en 1945 en Autriche, est professeur de physique expérimentale à l'Université de Vienne et directeur scientifique de l'Institut d'optique quantique et d'information quantique (IQOQI) à l'Académie des sciences d'Autriche. Il est mondialement connu pour ses expériences marquantes dans le domaine des fondements conceptuels de la physique quantique, et il a contribué de façon décisive au développement de l'information quantique et de l'optique atomique. Born in Austria in 1945, Anton Zeilinger is professor of experimental physics at the University of Vienna, and scientific director of the IQOQI (Institute for Quantum Optics and Quantum Information) of the Austrian Academy of Sciences. He is known worldwide for his groundbreaking experiments on the conceptual foundations of quantum physics. He has made major contributions to the development of quantum information and atom optics. Curriculum vitae 1972-1981 Senior Research Assistant, Atominstitut Vienna (Austria) 1974-1989 Guest Researcher, Institut Laue Langevin, Grenoble 1981-1983 Visiting Associate Professor of Physics, M.I.T. (USA) 1983-1990 Associate Professor, Technical University of Vienna 1988-1989 Full Professor of Physics, Technical University of Munich (Germany) 1990-1999 Full Professor of Experimental Physics, University of Innsbruck 1995 Professeur au Collège de France (chaire internationale) 1999- Full Professor of Experimental Physics, University of Vienna 2004- Scientific Director,
    [Show full text]