2019 Newsletter a Message from the Chair
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commencement Program
Sunday, the Sixteenth of May, Two Thousand and Ten ten o’clock in the morning ~ wallace wade stadium Duke University Commencement ~ 2010 One Hundred Fifty-Eighth Commencement Notes on Academic Dress Academic dress had its origin in the Middle Ages. When the European universities were taking form in the thirteenth and fourteenth centuries, scholars were also clerics, and they adopted Mace and Chain of Office robes similar to those of their monastic orders. Caps were a necessity in drafty buildings, and Again at commencement, ceremonial use is copes or capes with hoods attached were made of two important insignia given to Duke needed for warmth. As the control of universities University in memory of Benjamin N. Duke. gradually passed from the church, academic Both the mace and chain of office are the gifts costume began to take on brighter hues and to of anonymous donors and of the Mary Duke employ varied patterns in cut and color of gown Biddle Foundation. They were designed and and type of headdress. executed by Professor Kurt J. Matzdorf of New The use of academic costume in the United Paltz, New York, and were dedicated and first States has been continuous since Colonial times, used at the inaugural ceremonies of President but a clear protocol did not emerge until an Sanford in 1970. intercollegiate commission in 1893 recommended The Mace, the symbol of authority of the a uniform code. In this country, the design of a University, is made of sterling silver throughout. gown varies with the degree held. The bachelor’s Significance of Colors It is thirty-seven inches long and weighs about gown is relatively simple with long pointed Colors indicating fields of eight pounds. -
Millennium Development Holes
www.nature.com/nature Vol 446 | Issue no. 7134 | 22 March 2007 Millennium development holes The political commitment to helping the developing world is failing to deliver on its promises. The problem is made worse by the questionable evaluation of progress. n 2000, 189 world leaders committed to eight Millennium Devel- few developing countries have any data for around 1990, the baseline opment Goals (MDGs), ranging from halving extreme poverty and year. It is impossible to estimate progress for most of the indicators Ihunger, and rolling back killer diseases such as AIDS and malaria, over less than five years, and sparse poverty data can only be reliably to providing universal primary education. The deadline of 2015 to compared over decades. To pretend that progress towards the 2015 achieve all these ambitious goals is now rapidly approaching. goals can be accurately and continually measured is false. As a rallying cry that has pushed development up the inter national Significant efforts are now being made to improve data collection. political agenda, the goals have been an indisputable success. They Meanwhile, UN agencies fill in the missing data points using ‘model- have also, for better or worse, conferred power and legitimacy on ling’ — in practice, a recipe for potentially misleading extrapolation interests within the international aid machine, in particular the and political tampering. United Nations (UN) and the World Bank. Indeed, the lack of data makes it impossible not only to track But the goals are ultimately political promises, and as such they progress, but also to assess the effectiveness of measures taken. -
Brief Newsletter from World Scientific February 2017
Brief Newsletter from World Scientific February 2017 Exclusive Interview with 2003 Nobel Laureate One of the Top Condensed Matter Theorists and World Scientific Author Anthony Leggett Sir Professor Anthony James Leggett is a distinguished physicist who was awarded the Nobel Prize in Physics in 2003 for his pioneering contributions to the theory of superconductors and superfluids. He is currently a professor at the University of Illinois at Urbana-Champaign. Prof Leggett gave a presentation at the 2016 APS March Meeting in Baltimore, USA on “Reflections on the past, present and future of condensed matter physics”. In a phone interview, he shared with us some of his thoughts and further musings on the future of condensed matter physics. Paradigm Shift and Our Quest for the Unknown Chad Hollingsworth Your talk at the APS March Meeting 2016 mentioned developments That probably depends on your current tenure status! Certainly, if that you classified as “paradigm shifts”. Are there any recent you have a secure, tenured job (as I have been fortunate enough to discoveries that you would classify as paradigm shifts? have for the last few decades), then I think most certainly it’s better Well, if we go slightly outside the area of condensed matter physics to explore the unknown. But, of course, I appreciate that in the current as it has been conventionally defined, then, undoubtedly, any employment situation, people who have not got a tenured job need revolution which overthrew the view of quantum mechanics as a to think about their future. This may well be a rather strong pressure complete account of the world would, I think, certainly qualify as a to basically explore the known further. -
Arxiv:Quant-Ph/0101077 V1 17 Jan 2001 His Get When Rect W Y B Mals.” Cup of Ab of Miliar
100 Years of the Quantum Max Tegmark Dept. of Physics, Univ. of Pennsylvania, Philadelphia, PA 19104; [email protected] John Archibald Wheeler Princeton University, Department of Physics, Princeton, NJ 08544; [email protected] (An abbreviated version of this article, with much better graphics, was published in the Feb. 2001 issue of Scientific American, p.68-75.) Abstract: As quantum theory celebrates its 100th birthday, spectacular successes are mixed with outstanding puzzles and promises of new technologies. This article reviews both the successes of quantum theory and the ongoing debate about its consequences for issues ranging from quantum computation to consciousness, parallel universes and the nature of physical reality. We argue that modern experiments and the discovery of decoherence have have shifted prevailing quantum inter- pretations away from wave function collapse towards unitary physics, and discuss quantum processes in the framework of a tripartite subject-object-environment decomposition. We conclude with some speculations on the bigger picture and the search for a unified theory of quantum gravity. \...in a few years, all the great physical constants will ever, this involved an assumption so bizarre that even have been approximately estimated, and [...] the only oc- he distanced himself from it for many years afterwards: cupation which will then be left to the men of science will that energy was only emitted in certain finite chunks, or be to carry these measurement to another place of deci- \quanta". Yet this strange assumption proved extremely mals." As we enter the 21st century amid much brouhaha successful. Inspired by Planck's quantum hypothesis, Pe- about past achievements, this sentiment may sound fa- ter Debye showed that the strange thermal behavior of miliar. -
Guide to Wolfgang Kurt Hermann Panofsky Papers, 1932-2008 Collection SLAC003 SLAC National Accelerator Laboratory, Stanford University
Guide to Wolfgang Kurt Hermann Panofsky Papers, 1932-2008 Collection SLAC003 SLAC National Accelerator Laboratory, Stanford University Contact Information: Archives, History & Records Office SLAC National Accelerator Laboratory 2575 Sand Hill Road MS97 Menlo Park, CA 94025 Phone: (650) 926-5376 Email: [email protected] URL: http://www.slac.stanford.edu/history/ ©2018 SLAC National Accelerator Laboratory. All rights reserved. Panofsky Papers Guide Contents Descriptive Summary...................................................................................................................... 2 Administrative Information ............................................................................................................ 2 Biographical Note ....................................................................................................................... 3 Scope and Content .................................................................................................................... 12 Arrangement ............................................................................................................................. 12 Related Material ........................................................................................................................ 21 1 Panofsky Papers Guide Descriptive Summary Title: Wolfgang Kurt Hermann Panofsky Papers, 1932-2008 Collection Number: SLAC003 Creator: Panofsky, Wolfgang Kurt Hermann Extent: 220 cubic feet Repository: Stanford University. SLAC National Accelerator Laboratory. -
The Physics of Negative Refraction and Transformation Optics
The Physics of Negative Refraction and Transformation Optics by Wei Hsiung Wee Thesis submitted for the degree of Doctor of Philosophy Condensed Matter Theory Group Department of Physics Imperial College London June 2011 Declaration of Originality This thesis is a result of the author’s own work. All other work contained within are appropriately referenced to the best of the author’s knowledge. Abstract Whilst optics is one of the oldest field in science, there are still aspects of electromag- netism that we are only beginning to uncover. For instance, it was demonstrated that materials with simultaneously negative permittivity and permeability exhibit certain exotic behavior; where familiar physical phenomena, such as refraction, are reversed. As such, these materials came to be known as negative refractive index materials (NRIM) and their collective properties as negative refraction. One of the most important and remarkable property of NRIM is perfect lensing - the ability to transport both supra and sub-wavelength optical information from one surface (ob- ject plane) to another (image plane), forming images with unprecedented resolution, beyond the diffraction limit. Perfect lensing itself is a consequence of deeper sym- metries in electromagnetism, encapsulated in the language of transformation optics - with which we have both a descriptive tool to unify diverse electromagnetic con- figuarations, as well as a prescriptive tool to design media which bends light at will. While, such transformation medium and NRIM have been demonstrably realised using metamaterials, several challenges remain, of which loss is the major challenge. It is therefore under this trinity of concepts: metamaterials, negative refraction and transformation optics that this thesis is presented. -
Professor Sir John PENDRY Citation
Doctor of Science honoris cαusa Professor Sir John PENDRY Citation Today, we see Professor Sir John Pendry sitting altering his research focus every 10 years or so with us on the stage. In the future being created has helped. Such an approach has taken him from by the transformational work of this eminent developing the first computation techniques for physicist, we may not. For that time, just around low energy electron diffraction to the design of the corner, is not the WYSIWYG world of what novel metamaterials. Exciting旬, such materials you see is what you get. It is of flat lenses, light provide access to properties not found in nature, bending materials, and yes, practical Harry Potter opening up brave new realms that have never invisibility cloaks. been scientifically explored before. In his groundbreaking studies, Sir John has What makes Sir John’s ideas doubly exhilarating made a specialty of venturing into the previously is that he not only produces a concept. He also impossible. From these intellectual travels, the works closely with experimental physicists to Chair Professor of Solid State Physics at Imperial put his work into practice:“If you are going to College London brings back radical new ways of have all this fun with science, you must make viewing the world 一 or not viewing it in some something of 丸” he has said. In doing so, Sir cases. John has transformed the world of physics. In addition, he has re-fired the public’s imagination Relishing the challenge of spotting the anomalies about the significance of field, with the cloak that escape the attention of the rest of us, he of invisibility ironically providing a valuable hurtles forward at a pace as fast as the light he spotlight for physics’ key role in development. -
C.V. De Anton Zeilinger
Anton Zeilinger Élu Associé étranger le 8 décembre 2009 dans la section de Physique Anton Zeilinger, né en 1945 en Autriche, est professeur de physique expérimentale à l'Université de Vienne et directeur scientifique de l'Institut d'optique quantique et d'information quantique (IQOQI) à l'Académie des sciences d'Autriche. Il est mondialement connu pour ses expériences marquantes dans le domaine des fondements conceptuels de la physique quantique, et il a contribué de façon décisive au développement de l'information quantique et de l'optique atomique. Born in Austria in 1945, Anton Zeilinger is professor of experimental physics at the University of Vienna, and scientific director of the IQOQI (Institute for Quantum Optics and Quantum Information) of the Austrian Academy of Sciences. He is known worldwide for his groundbreaking experiments on the conceptual foundations of quantum physics. He has made major contributions to the development of quantum information and atom optics. Curriculum vitae 1972-1981 Senior Research Assistant, Atominstitut Vienna (Austria) 1974-1989 Guest Researcher, Institut Laue Langevin, Grenoble 1981-1983 Visiting Associate Professor of Physics, M.I.T. (USA) 1983-1990 Associate Professor, Technical University of Vienna 1988-1989 Full Professor of Physics, Technical University of Munich (Germany) 1990-1999 Full Professor of Experimental Physics, University of Innsbruck 1995 Professeur au Collège de France (chaire internationale) 1999- Full Professor of Experimental Physics, University of Vienna 2004- Scientific Director, -
CUBA NACIONALES 1. Cuba Crea Fondo Para Financiar La Ciencia
EDITOR: NOEL GONZÁLEZ GOTERA Nueva Serie. Número 167 Diseño: Lic. Roberto Chávez y Liuder Machado. Semana 201214 - 261214 Foto: Lic. Belkis Romeu e Instituto Finlay La Habana, Cuba. CUBA NACIONALES Variadas 1. Cuba crea fondo para financiar la ciencia. Radio Rebelde, 2014.12.17 - 22:16:14 / [email protected] / Sandy Carbonell Ramos… Cuba impulsará el financiamiento de la actividad científica con el funcionamiento a partir de enero próximo del Fondo de Ciencia y Tecnología (FONDIT), informo este miércoles la ministra del sector en la Asamblea Nacional del Poder Popular. Con la presencia del miembro del Buro Político y Primer Vicepresidente de los Consejos de Estado y de Ministros, Miguel Díaz- Canel Bermúdez, la titular de Ciencia, Tecnología y Medio Ambiente (Citma), Elba Rosa Pérez Montoya, precisó que ese fondo ya existe y será anunciado ante los parlamentarios cubanos. Al intervenir en la Comisión de Educación, Cultura, Ciencia, Tecnología y Medio Ambiente, Pérez Montoya aseguró que también se ha avanzado en la política del Sistema de Ciencia, cuya propuesta está elaborada y a disposición de la Comisión Permanente de Implementación y Desarrollo de los Lineamientos para su posterior presentación al Consejo de Ministros. Las declaraciones de la ministra respondían además a los planteamientos del diputado por el municipio habanero de La Lisa, Yury Valdés Blandín, quien expuso los criterios de su comisión sobre el 1 reordenamiento de los centros de ciencia e innovación tecnológica, tema central del debate. Valdés Blandín explicó cómo a pesar de los atrasos en este proceso, los señalamientos hechos para su avance también se ven reflejados en el Decreto Ley 323 del CITMA aprobado en agosto último para regir esta tarea. -
Physics Illinois News
PHYSICS ILLINOIS NEWS THE DEPARTMENT OF PHYSICS AT THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN • 2003 NUMBER 2 Tony Leggett Named 2003 Nobel Laureate in Physics directions for research in the quantum transmitted this information to several When Leggett came to Illinois physics of macroscopic systems and theorists, including Leggett. According as the John D. and Catherine T. the use of condensed matter systems to Richardson, Leggett came up with MacArthur Chair in 1983, he was to test the foundations of quantum the explanation in less than three already widely recognized as a world mechanics. He is a master at under- weeks, working out the complete leader in the theory of low-tempera- standing how the most fundamental theory from their data. ture physics. According to Ralph laws of nature—the weird world of That discovery was indeed worthy Simmons, professor emeritus and head quantum mechanics that tells us how of a Nobel Prize, and in 1996, the of the Department of Physics at that atoms work—apply to the everyday award was given to the original three time, the MacArthur Foundation had world we live in. He has added experimenters. In the announcement settled on 10 universities that were to immeasurably to the rich intellectual of the 1996 Nobel Prize in Physics, be given endowments for professor- development of condensed matter Leggett was cited for assisting the prize ships. The University of Illinois was physics at the University of Illinois, winners in their interpretation of the one of only two public universities and he has unlocked the door to experiments that led to a breakthrough on the list. -
Physics 461 Theoretical Mechanics
A special course entitled Introduction to superconductivity Instructor Professor Anthony J. Leggett University Illinois in Urbana Champaign and Shanghai Jiao Tong University Assisting Instructors: Professor Ying Liu Pennsylvania State University and Shanghai Jiao Tong University Professor Hang Zheng Shanghai Jiao Tong University Doctor Shun Wang Shanghai Jiao Tong University April 12 – May 3, 2013 Classrooms are to be announced (TBA). Course Summary This course is a one-credit, 16-lecture upper-level undergraduate and lower level graduate physics course aimed at providing an overview of physical concepts and fundamental theories of superconductivity, focusing on Bardeen-Cooper, and Schrieffer (BCS) theory, non-s-wave pairing, and examples of unconventional superconductors. Recitations While Professor Leggett will deliver the main lectures, Professors Liu, Zheng and Dr. Wang will provide some additional lectures and recitations to supplement Professor Leggett’s lectures, and oversee the homework and term papers. Office hours/Recitation Professor Ying Liu will also hold office hours in Physics Building. He may also offer additional recitation if needed. Homework Sets and Term Paper In addition to formal lectures, we will also have homework sets. Solving problems is an effective tool to help you grasp physical concepts and build analytical skills and an integrated part of learning. There will be one problem set for Week 1 and 2 each (two problem sets total). At the end of the course, each student will write a term paper on a specific subject related to the course. Some possible topics will be provided. You’re also encouraged to pick a subject of your own, but will need to discuss the suitability of your pick with Professors Liu and Zheng. -
Frontiers in Optics 2010/Laser Science XXVI
Frontiers in Optics 2010/Laser Science XXVI FiO/LS 2010 wrapped up in Rochester after a week of cutting- edge optics and photonics research presentations, powerful networking opportunities, quality educational programming and an exhibit hall featuring leading companies in the field. Headlining the popular Plenary Session and Awards Ceremony were Alain Aspect, speaking on quantum optics; Steven Block, who discussed single molecule biophysics; and award winners Joseph Eberly, Henry Kapteyn and Margaret Murnane. Led by general co-chairs Karl Koch of Corning Inc. and Lukas Novotny of the University of Rochester, FiO/LS 2010 showcased the highest quality optics and photonics research—in many cases merging multiple disciplines, including chemistry, biology, quantum mechanics and materials science, to name a few. This year, highlighted research included using LEDs to treat skin cancer, examining energy trends of communications equipment, quantum encryption over longer distances, and improvements to biological and chemical sensors. Select recorded sessions are now available to all OSA members. Members should log in and go to “Recorded Programs” to view available presentations. FiO 2010 also drew together leading laser scientists for one final celebration of LaserFest – the 50th anniversary of the first laser. In honor of the anniversary, the conference’s Industrial Physics Forum brought together speakers to discuss Applications in Laser Technology in areas like biomedicine, environmental technology and metrology. Other special events included the Arthur Ashkin Symposium, commemorating Ashkin's contributions to the understanding and use of light pressure forces on the 40th anniversary of his seminal paper “Acceleration and trapping of particles by radiation pressure,” and the Symposium on Optical Communications, where speakers reviewed the history and physics of optical fiber communication systems, in honor of 2009 Nobel Prize Winner and “Father of Fiber Optics” Charles Kao.