Review of Haliotis Midae

Total Page:16

File Type:pdf, Size:1020Kb

Review of Haliotis Midae Review of Haliotis midae (Version edited for public release) Prepared for the European Commission Directorate General Environment ENV.E.2. – Environmental Agreements and Trade by the United Nations Environment Programme World Conservation Monitoring Centre November, 2010 UNEP World Conservation Monitoring PREPARED FOR Centre 219 Huntingdon Road The European Commission, Brussels, Belgium Cambridge CB3 0DL DISCLAIMER United Kingdom Tel: +44 (0) 1223 277314 The contents of this report do not necessarily Fax: +44 (0) 1223 277136 reflect the views or policies of UNEP or Email: [email protected] contributory organisations. The designations Website: www.unep-wcmc.org employed and the presentations do not imply ABOUT UNEP-WORLD CONSERVATION the expressions of any opinion whatsoever on MONITORING CENTRE the part of UNEP, the European Commission or contributory organisations concerning the The UNEP World Conservation Monitoring legal status of any country, territory, city or Centre (UNEP-WCMC), based in Cambridge, area or its authority, or concerning the UK, is the specialist biodiversity information delimitation of its frontiers or boundaries. and assessment centre of the United Nations Environment Programme (UNEP), run cooperatively with WCMC, a UK charity. The © Copyright: 2010, European Commission Centre's mission is to evaluate and highlight the many values of biodiversity and put authoritative biodiversity knowledge at the centre of decision-making. Through the analysis and synthesis of global biodiversity knowledge the Centre provides authoritative, strategic and timely information for conventions, countries and organisations to use in the development and implementation of their policies and decisions. The UNEP-WCMC provides objective and scientifically rigorous procedures and services. These include ecosystem assessments, support for the implementation of environmental agreements, global and regional biodiversity information, research on threats and impacts, and the development of future scenarios. CITATION UNEP-WCMC. 2010. Review of Haliotis midae. UNEP-WCMC, Cambridge. 2 Introduction 1. Introduction The endemic marine mollusc Haliotis midae was listed in CITES Appendix III by South Africa in 2007, (CITES Notification No. 2007/007) to help combat the growing problem of illegal harvest and trade (CoP14 Inf. 58). The CITES Trade Data used for this analysis were extracted on 3rd November 2010. 3 Haliotis midae 2. Species review GASTROPODA HALIOTIDAE SPECIES: Haliotis midae SYNONYMS: - COMMON NAMES: Midas Ear Abalone (English), Perlemoen (English) RANGE STATES: South Africa RANGE STATE UNDER REVIEW: South Africa IUCN RED LIST: Not evaluated PREVIOUS EC OPINIONS: - TRADE PATTERNS: Haliotis midae was listed in CITES Appendix III by South Africa on 03/05/07, then deleted on 24/06/10, hence trade data are currently available for the period 2007-2009. Direct exports of H. midae to the EU 2007-2009, consisted of moderate levels of captive-bred and wild- sourced shells, all from South Africa (Table 1). In addition, Poland reported the confiscation/seizure of 14 shells from the United States of America in 2009. The quantity of wild-sourced shells imported by the EU over this period (355 shells) was considerably smaller than the quantity reported by South Africa (11 882 shells); this may be because South Africa reports on permits issued rather than actual trade. The export permit numbers of the 75 wild-sourced shells and 280 wild-sourced shells reported as imports by Germany in 2007 and 2009 did not correspond to any export permits reported in South Africa’s annual reports. Indirect exports of H. midae to the EU consisted of one wild-sourced carving of unknown origin exported by the United States of America to the United Kingdom in 2008. The United Kingdom reported the confiscation/seizure of one carving of unknown origin from the United States in the same year. Direct exports of Haliotis midae to countries other than the EU-27 consisted mainly of captive-bred live specimens, bodies, meat and shells from South Africa (Table 2). There was also some trade in wild- sourced live specimens and meat. The main importers were Hong Kong Special Administrative Region, Japan, Singapore and Taiwan (Province of China). There were several instances where trade appeared to have been reported by the importer but not by South Africa (Table 2), however an analysis of permit numbers confirmed that the 550 kg of wild- sourced carvings reported as imports by the United States corresponded with a shipment of 550 kg of wild-sourced shells exported by South Africa, and the 420 live captive–bred specimens reported as imports by Japan corresponded with a shipment of 420 kg of live captive-bred specimens exported by 4 Haliotis midae South Africa. No corresponding shipment was found for the 29 kg of captive-bred scientific specimens reported as an import by the United Arab Emirates. Table 1. Direct exports of Haliotis midae to EU-27, 2007-2009. All trade was in shells. Exporter Importer Units Purpose Source Reported by 2007 2008 2009 Total South Africa Germany kg T C Importer 3188 2430 5618 Exporter 4438 3805 8243 T W Importer 75 280 355 Exporter 486 486 Hungary kg T C Importer Exporter 285 100 385 Netherlands kg T C Importer Exporter 5195 4610 9805 T W Importer Exporter 11166 11166 Poland kg T W Importer Exporter 230 230 United States Poland - I Importer 14 14 of America Exporter Subtotals kg C Importer 3188 2430 5618 (main trade Exporter 9918 8515 18433 only) W Importer 75 280 355 Exporter 11882 11882 Table 2. Direct exports of Haliotis midae from South Africa to countries other than the EU-27 2007- 2009. (Note that 2009 annual reports from several of the main non-EU H. midae importers had not been received by 3rd November 2010) Term Units Purpose Source Reported by 2007 2008 2009 Total bodies - T C Importer Exporter 693620 693620 carvings kg T W Importer 550 550 Exporter - P W Importer 2 2 Exporter T W Importer 6 6 Exporter live kg T C Importer 120123 164401 10200 294724 Exporter 1928900 1493700 3422600 W Importer Exporter 8397 8397 - T C Importer 420 420 Exporter 1151930 1151930 meat kg T C Importer 19980 62504 29799 112283 Exporter 1163904 1569792 2733696 W Importer Exporter 52083 52083 shells kg T C Importer Exporter 12000 94296 106296 W Importer 5 Haliotis midae Term Units Purpose Source Reported by 2007 2008 2009 Total Exporter 4550 4550 - T C Importer Exporter 20 20 specimens kg T C Importer 29 29 Exporter ml S I Importer 1 1 Exporter T C Importer 1 1 Exporter 0.1 0.1 - E W Importer Exporter 6 6 It was stated that there was “almost no domestic consumption” of H. midae in South Africa (Bürgener, 2008); however, local restaurants were reported to get some produce from recreational and subsistence fishers (Sauer et al., 2003). The prices of fresh H. midae were reported to have fluctuated between USD 30-40 per kg after 1996, with prices about USD 2-3 lower paid for the frozen product (Sauer et al., 2003). Raemaekers and Britz (2009) stated that “abalone divers in the Eastern Cape were paid between 40 and 60 USD per kg of de-shelled abalone, but could obtain up to 77 USD per kg depending on demand.” The price for dried H. midae was reported to have risen from USD 200 to 300 between the years 1996 and 2000 (Sauer et al., 2003), reaching USD 1000 in 2008 (Fiske, 2008). Particularly in China, dried Haliotis products were reported to have high economic value in traditional medicine (To et al., 2006). Moolla (2008) estimated that the illegal exports of H. midae were ten times bigger than the legal exports. According to To et al. (2006), substantial exports of H. midae from Mozambique to Hong Kong between 1998 and 2002 were likely sourced in South Africa. Bürgener (2008) stated that “apart from the South African fishery and aquaculture production and the Namibian aquaculture operation, there is no other known legal commercial harvesting or trade in abalone in any of the African countries.” Sauer et al. (2003) estimated that about ten illegal factories were producing about 1600-1750 tonnes of canned or dried abalone for the Asian export market every year. Moolla (2008) stated the following about the Asian export trade: “the demand for South Africa’s white-shelled Haliotis midae escalated with the continued boom of both the Hong Kong and Chinese economies. Demand for abalone in Hong Kong, China and other South East Asian nations has increased by an estimated 20% annually between 2004 and 2007. The growth of the South African abalone market in South East Asia has occurred against a backdrop of a collapsing total allowable catch for legal abalone right holders in South Africa and a stagnating abalone farming industry, which produces an average of 900 tonnes of abalone annually. The legal and regulated South African abalone industry – both wild and aquaculture – could have marketed a maximum of 1025 tonnes (shell weight) of [H]aliotis midae to China and Hong Kong during 2006. However, it is understood that Chinese and Hong Kong consumers purchased approximately between 2000 and 2500 tonnes (flesh weight) of South African abalone in 2005 and 2006. These numbers are supported by anecdotal reports by South African law enforcement officials, conservation groups and members of the abalone industry that only about 10% of poached abalone is confiscated by South African authorities.” CONSERVATION STATUS in range states Haliotis midae is a marine mollusc that inhabits rocky surfaces on the subtidal zone (Abbott and Dance, 1991). It was reported to be a South African endemic (Cook and Sweijd, 1999; South Africa, 2007). One record in the Lobito Bay of Angola was listed as “doubtful” by ABMAP (2006). Some farming of H. midae in Namibia was also reported (Ministry of Trade and Industry, 2010).
Recommended publications
  • Geoducks—A Compendium
    34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A.
    [Show full text]
  • Shellfish Allergy - an Asia-Pacific Perspective
    Review article Shellfish allergy - an Asia-Pacific perspective 1 1 1 2 Alison Joanne Lee, Irvin Gerez, Lynette Pei-Chi Shek and Bee Wah Lee Summary Conclusion: Shellfish allergy is common in the Background and Objective: Shellfish forms a Asia Pacific. More research including food common food source in the Asia-Pacific and is challenge-proven subjects are required to also growing in the West. This review aims to establish the true prevalence, as well as to summarize the current literature on the understand clinical cross reactivity and epidemiology and research on shellfish allergy variations in clinical features. (Asian Pac J Allergy with particular focus on studies emerging from Immunol 2012;30:3-10) the Asia-Pacific region. Key words: Shellfish allergy, Prawn allergy, Shrimp Data Sources: A PubMed search using search allergy, Food allergy, Anaphylaxis, Tropomyosin, strategies “Shellfish AND Allergy”, “Shellfish Allergy Asia”, and “Shellfish AND anaphylaxis” Allergens, Asia was made. In all, 244 articles written in English were reviewed. Introduction Shellfish, which include crustaceans and Results: Shellfish allergy in the Asia-Pacific molluscs, is one of the most common causes of food ranks among the highest in the world and is the allergy in the world in both adults and children, and most common cause of food-induced anaphylaxis. it has been demonstrated to be one of the top Shellfish are classified into molluscs and ranking causes of food allergy in children in the arthropods. Of the arthropods, the crustaceans Asia-Pacific.1-3 In addition, shellfish allergy usually in particular Penaeid prawns are the most persists, is one of the leading causes of food-induced common cause of allergy and are therefore most anaphylaxis, and has been implicated as the most extensively studied.
    [Show full text]
  • Phylogeography of Geoduck Clams Panopea Generosa in Southeastern Alaska
    FINAL REPORT Phylogeography of Geoduck Clams Panopea generosa in Southeastern Alaska W. Stewart Grant and William D. Templin Division of Commercial Fisheries, Alaska Department of Fish & Game, 333 Raspberry Road, Anchorage, AK 99518, USA Grant et al.: Genetics of geoduck clams 2 Abstract: Geoduck clams Panopea generosa have supported commercial fisheries in Alaska for over two decades and subsistence harvests for much longer. Increasing demands for these clams have stimulated interest in enhancing production through hatchery rearing of larvae and out- planting of juveniles. Key components to stock management and supplementation are an understanding of genetic stock structure and the development of genetic guidelines for hatchery culture and out-planting. In this study, we examined genetic variability among geoduck clams from 16 localities in southeastern Alaska and in three samples of hatchery-reared juveniles. A 684 base-pair segment of the mitochondrial (mt) DNA cytochrome oxidase 1 gene produced 168 haplotypes in 1362 clams and showed a significant excess of low-frequency haplotypes overall (Tajima’s DT = -2.63; Fu’s FS = -29.01). Haplotype diversity (h = 0.708) and nucleotide diversity (θπ = 0.0018) were moderate compared to other marine invertebrates. The analysis of molecular variance did not detect heterogeneity among samples (FST = 0.0008, P = 0.623, mean sample size N = 71.7 clams). Microsatellites showed low-frequency null alleles that produced pervasive departures from Hardy-Weinberg genotypic proportions and that distort estimates of genetic diversity. However, estimates of divergence between populations are relatively un affected because the null alleles were more or less evenly distributed among samples.
    [Show full text]
  • Physiological Responses of the Abalone Haliotis Discus
    www.nature.com/scientificreports OPEN Physiological responses of the abalone Haliotis discus hannai to daily and seasonal temperature Received: 11 March 2019 Accepted: 17 May 2019 variations Published: xx xx xxxx Hee Yoon Kang1, Young-Jae Lee1, Woo-Young Song1, Tae-Ik Kim2, Won-Chan Lee3, Tae Young Kim 1 & Chang-Keun Kang1 Organisms inhabiting tidal mixing-front zones in shallow temperate seas are subjected to large semidiurnal temperature fuctuations in summer. The ability to optimize energy acquisition to this episodic thermal oscillation may determine the survival, growth and development of these ectotherms. We compared the physiological and molecular responses of Haliotis discus hannai cultivated in suspended cages to fuctuating or stable temperature conditions. Several physiological indicators (respiration, excretion rates and O:N) were measured in both conditions, and alterations in the proteome during thermal fuctuations were assessed. No summer mortality was observed in abalone cultivated in fuctuating temperatures compared with that at stable high temperatures. Metabolic rates increased sharply during stable warm summer conditions and fuctuated in accordance with short-term temperature fuctuations (20–26 °C). Ammonia excretion rates during acute responses were comparable in both conditions. When abalone were exposed to fuctuating temperatures, enzyme activities were downregulated and structure-related protein expression was upregulated compared with that at an acclimation temperature (26 °C), highlighting that exposure to low temperatures during fuctuations alters molecular processes. Our results reveal that modulation of physiological traits and protein expression during semidiurnal thermal fuctuations may bufer abalone from the lethal consequences of extreme temperatures in summer. Te temperature dependence of physiological processes in marine ectotherms is well recognized1,2.
    [Show full text]
  • Growth-Related Gene Expression in Haliotis Midae
    GROWTH‐RELATED GENE EXPRESSION IN HALIOTIS MIDAE Mathilde van der Merwe Dissertation presented for the degree of Doctor of Philosophy (Genetics) at Stellenbosch University Promoter: Dr Rouvay Roodt‐Wilding Co‐promoters: Dr Stéphanie Auzoux‐Bordenave and Dr Carola Niesler December 2010 Declaration By submitting this dissertation, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 09/11/2010 Copyright © 2010 Stellenbosch University All rights reserved I Acknowledgements I would like to express my sincere gratitude and appreciation to the following persons for their contribution towards the successful completion of this study: Dr Rouvay Roodt‐Wilding for her continued encouragement, careful attention to detail and excellent facilitation throughout the past years; Dr Stéphanie Auzoux‐Bordenave for valuable lessons in abalone cell culture and suggestions during completion of the manuscript; Dr Carola Niesler for setting an example and providing guidance that already started preparing me for a PhD several years ago; Dr Paolo Franchini for his patience and greatly valued assistance with bioinformatics; Dr Aletta van der Merwe and my fellow lab‐colleagues for their technical and moral support; My dear husband Willem for his love, support and enthusiasm, for sitting with me during late nights in the lab and for making me hundreds of cups of tea; My parents for their love and encouragement and for instilling the determination in me to complete my studies; All my family and friends for their sincere interest.
    [Show full text]
  • Genomic Solutions for Shellfish Selective Breeding
    GENOMIC SOLUTIONS FOR SHELLFISH SELECTIVE BREEDING Workshop Vivaldi Lucie Genestout & Romain Morvezen AQUA 2018 Montpellier – 29/08/2018 Overview • 300 000 analyzes / year • 40 000 for aquaculture • 1 200 m2 of facilities • 20 km from Paris • Since 1956 • 2 million samples in stock • Subsidiary of the cooperative Lucie GENESTOUT - LABOGENA - AQUA 2018 - VIVALDI An industrial genotyping platform • High throughput genotyping on DNA chips • 8 liquid handling robots (Tecan) • 5 extraction robots Qiasymphony (Qiagen) • Infinium XT chemistry (Illumina): 96 samples HD Chips • Management system LIMS • Barcode traceability from the sampling to the result • Standards • ISO17025 • ISAG interlaboratory tests rank 1 Lucie GENESTOUT - LABOGENA - AQUA 2018 - VIVALDI An efficient SNP panel for Pacific Oyster • 384 markers on new high throughput Illumina XT chemistry • Including OsHV-1 resistance markers • Assignments made with AccurAssign Labogena software • Taking into account mating plans • Using both likelihood and exclusion • Ranking of parents 96samples DNA chip Illumina Lucie GENESTOUT - LABOGENA - AQUA 2018 - VIVALDI project An efficient SNP panel for Pacific Oyster Assigned to 1 couple 466 514 577 408 Assigned to many couples 12 0 0 0 Not assigned 12 47 23 6 Inexploitable 31 35 12 152 Useful assignment rate 89% 86% 94% 72% Results from GenOyster Project, obtained with GigADN Project markers Lucie GENESTOUT - LABOGENA - AQUA 2018 - VIVALDI project An efficient SNP panel for Pacific Oyster Assigned to 1 couple 522 1098 Assigned to many couples 2
    [Show full text]
  • Shelled Molluscs
    Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1.
    [Show full text]
  • Os Nomes Galegos Dos Moluscos 2020 2ª Ed
    Os nomes galegos dos moluscos 2020 2ª ed. Citación recomendada / Recommended citation: A Chave (20202): Os nomes galegos dos moluscos. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga /wp!content/up oads/achave_osnomesga egosdos"mo uscos"2020.pd# Fotografía: caramuxos riscados (Phorcus lineatus ). Autor: David Vilasís. $sta o%ra est& su'eita a unha licenza Creative Commons de uso a%erto( con reco)ecemento da autor*a e sen o%ra derivada nin usos comerciais. +esumo da licenza: https://creativecommons.org/ icences/%,!nc-nd/-.0/deed.g . Licenza comp eta: https://creativecommons.org/ icences/%,!nc-nd/-.0/ ega code. anguages. 1 Notas introdutorias O que cont!n este documento Neste recurso léxico fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas) ! primeira edición d" Os nomes galegos dos moluscos é do ano #$%& Na segunda edición (2$#$), adicionáronse algunhas especies, asignáronse con maior precisión algunhas das denominacións vernáculas galegas, corrixiuse algunha gralla, rema'uetouse o documento e incorporouse o logo da (have. )n total, achéganse nomes galegos para *$+ especies de moluscos A estrutura )n primeiro lugar preséntase unha clasificación taxonómica 'ue considera as clases, ordes, superfamilias e familias de moluscos !'uí apúntanse, de maneira xeral, os nomes dos moluscos 'ue hai en cada familia ! seguir
    [Show full text]
  • Population Genetic Structure of the Perlemoen Haliotis Midae in South Africa: Evidence of Range Expansion and Founder Events
    MARINE ECOLOGY PROGRESS SERIES Vol. 270: 163–172, 2004 Published April 14 Mar Ecol Prog Ser Population genetic structure of the perlemoen Haliotis midae in South Africa: evidence of range expansion and founder events B. S. Evans1, 2, 4,*, N. A. Sweijd3, R. C. K. Bowie3, 5, P. A. Cook3, N. G. Elliott2 1School of Zoology, University of Tasmania, GPO Box 252-05, Hobart, Tasmania 7001, Australia 2CSIRO Marine Research, GPO Box 1538, Hobart, Tasmania 7001, Australia 3Department of Zoology, University of Cape Town, Private Bag, Rondebosch 7701, Cape Town, South Africa 4Present address: School of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland 4811, Australia 5Present address: Department of Zoology, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa ABSTRACT: Genetic diversity in Haliotis midae, a highly valued and heavily exploited marine gastropod, was assessed using 3 marker types across samples from the species’ range in South Africa. Variation was compared at 7 allozyme loci, 2 regions of mitochondrial DNA and 3 microsatellite loci. We conclude that populations of H. midae on either side of Cape Agulhas represent 2 independent reproductive stocks. The area of transition between the stocks coincides with oceanographic features of the region. Evidence from all 3 types of genetic marker indicates an isolated introduction event to the east of Cape Agulhas, and subsequent range expansion in an easterly direction. The disparity between allozyme data and the other 2 forms is seen as further evidence for the presence of balanc- ing selection at allozyme loci. KEY WORDS: Allozymes · Mitochondrial DNA · Microsatellites · Abalone Resale or republication not permitted without written consent of the publisher INTRODUCTION tions restricted to the eastern Cape coastline.
    [Show full text]
  • Sipunculus Nudus): an LC–MS-Based Metabolomics Study
    fmars-08-702101 July 26, 2021 Time: 16:57 # 1 ORIGINAL RESEARCH published: 26 July 2021 doi: 10.3389/fmars.2021.702101 Dietary Carbohydrate and Protein Levels Affect the Growth Performance of Juvenile Peanut Worm (Sipunculus nudus): An LC–MS-Based Metabolomics Study Jianqiang Huang1, Ruzhuo Zhong1, Chuangye Yang1,2,3*, Qingheng Wang1,2,3, Yongshan Liao1 and Yuewen Deng1,2,3 1 Fisheries College, Guangdong Ocean University, Zhanjiang, China, 2 Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China, 3 Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China The peanut worm (Sipunculus nudus) is an economically important fishery resource in China. To determine how dietary carbohydrate and protein levels affect the growth performance of juvenile S. nudus and identify the mechanisms underlying observed Edited by: patterns, five isoenergetic and isolipidic diets with different levels of carbohydrate and Xiaotong Wang, protein were formulated and fed to juvenile S. nudus; the experimental groups were Ludong University, China referred to as EG1, EG2, EG3, EG4, and EG5, respectively. After 90 days of feeding, Reviewed by: S. nudus had significantly lower survival rates when fed D5 compared with other Chenglong Ji, Yantai Institute of Coastal Zone diets (P < 0.05), and the highest survival rate was observed in EG2 individuals. The Research, Chinese Academy weight gain rate and specific growth rate were significantly higher in EG2 compared of Sciences (CAS), China Ming Li, with the other groups (P < 0.05). Metabolomic profiling using liquid chromatography– Ningbo University, China mass spectrometry revealed 83 significantly differential metabolites (POS: 59; NEG: *Correspondence: 24), which were identified via an in-house MS2 database.
    [Show full text]
  • Octopus As Predators of Haliotis Laevigata on an Abalone Sea Ranch of South-Western Australia
    Octopus as predators of Haliotis laevigata on an abalone sea ranch of south-western Australia Submitted by Claire Greenwell This Thesis is presented for the degree of Bachelor of Science Honours School of Veterinary and Life Sciences, Murdoch University, 2017 Declaration I declare that this Thesis is my own account of my research and contains as its main content work, which has not previously been submitted for a degree at any tertiary education institution. Claire Nicole Greenwell ii Acknowledgements Firstly I would like to thank Brad Adams, and the team at Ocean Grown Abalone. Without your generous support this project would not have been possible. I consider myself privileged to have had the opportunity to undertake this research in such a unique ecosystem. To Mark Wall, thank you for all your efforts, from collecting octopus samples, the explanation of processes, and taking us out diving. Your enthusiasm, hard work, and positive attitude is inspiring. Thanks also to Steve Chase and the dive team for your efforts and making us feel welcome on the ranch. I wish you all the best for the future and look forward to watching the operation grow. To my supervisors, Neil Loneragan, James Tweedley, and Ryan Admiraal thank you for your friendship, support and encouragement. I have much admiration and respect for you all. Ryan, thank you for your perseverance and help in tackling the data analysis. Despite some pretty nightmarish coding, you have a way of making stats fun. I am extremely grateful for your help. James, thank you for answering my countless questions, and for the many hints and insights along the way.
    [Show full text]
  • A STUDY of the REPRODUCTIVE BIOLOGY of the RED ABALONE, Hal/OTIS RUFESCENSSWAINSON, NEAR MENDOCINO, CALIFORNIA 1
    80 REPRINT FROM Calif. Fis" and Came, 63(2) : 80-94. 1977. A STUDY OF THE REPRODUCTIVE BIOLOGY OF THE RED ABALONE, HAl/OTIS RUFESCENSSWAINSON, NEAR MENDOCINO, CALIFORNIA 1 ALBERT E. GIORGI 2 Humboldt State University Arcata, California 95521 JOHN D. DEMARTINI Department of Biology Humboldt State University Arcata, California 95521 The reproductive cycles of two subtidal populations of the red abalone, Hil/iolis rulescens, were studied at Point Cabrillo Lighthouse Station and Van Damme State Park near Mendocino, California. From June 1972, through March 1974, gametogene­ sis was monitored histologically. Both populations spawned during spring and early summer. Not all members of either population spawned during a season. Fecundity was estaimated for females ranging in shell lengths 134.00 to 198.5 mm (5.3 to 7.8 inches). The lowest and highest estimates were 619,000 and 12,575,000 ripe oocytes per ovary. The minimum size at sexual maturity was investigated. The smallest male was 84.5 mm (3.3 inches) and the smallest female was 39.5 mm (1.6 inches). Females matured at a smaller size than males. A possible mode of gamete resorption was noted. INTRODUCTION The purpose of our study was to determine minimum size at sexual maturity, to measure fecundity, and to monitor histologically the reproductive cycle of two populations of the red abalone, Haliotis rufescens Swainson, for 2 years near Mendocino, California. Early investigators believed that the red abalone spawned during late winter and early spring (Heath 1925, Bonnot 1930, and Croker 1931). Boolootian, Farmanfarmaian and Giese (1962) used a gonad index to detect spawning in a red abalone population at Pacific Grove, California.
    [Show full text]