A Multi-Criteria Approach to Haliotis Tuberculata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geoducks—A Compendium
34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A. -
Shellfish Allergy - an Asia-Pacific Perspective
Review article Shellfish allergy - an Asia-Pacific perspective 1 1 1 2 Alison Joanne Lee, Irvin Gerez, Lynette Pei-Chi Shek and Bee Wah Lee Summary Conclusion: Shellfish allergy is common in the Background and Objective: Shellfish forms a Asia Pacific. More research including food common food source in the Asia-Pacific and is challenge-proven subjects are required to also growing in the West. This review aims to establish the true prevalence, as well as to summarize the current literature on the understand clinical cross reactivity and epidemiology and research on shellfish allergy variations in clinical features. (Asian Pac J Allergy with particular focus on studies emerging from Immunol 2012;30:3-10) the Asia-Pacific region. Key words: Shellfish allergy, Prawn allergy, Shrimp Data Sources: A PubMed search using search allergy, Food allergy, Anaphylaxis, Tropomyosin, strategies “Shellfish AND Allergy”, “Shellfish Allergy Asia”, and “Shellfish AND anaphylaxis” Allergens, Asia was made. In all, 244 articles written in English were reviewed. Introduction Shellfish, which include crustaceans and Results: Shellfish allergy in the Asia-Pacific molluscs, is one of the most common causes of food ranks among the highest in the world and is the allergy in the world in both adults and children, and most common cause of food-induced anaphylaxis. it has been demonstrated to be one of the top Shellfish are classified into molluscs and ranking causes of food allergy in children in the arthropods. Of the arthropods, the crustaceans Asia-Pacific.1-3 In addition, shellfish allergy usually in particular Penaeid prawns are the most persists, is one of the leading causes of food-induced common cause of allergy and are therefore most anaphylaxis, and has been implicated as the most extensively studied. -
Notes on the Correct Taxonomic Status of Haliotis Rugosa
Zootaxa 3646 (2): 189–193 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3646.2.7 http://zoobank.org/urn:lsid:zoobank.org:pub:EC2E6CDF-39A7-4392-9586-81F9ABD1EB39 Notes on the correct taxonomic status of Haliotis rugosa Lamarck, 1822, and Haliotis pustulata Reeve, 1846, with description of a new subspecies from Rodrigues Island, Mascarene Islands, Indian Ocean (Mollusca: Vetigastropoda: Haliotidae) BUZZ OWEN P.O. Box 601, Gualala, CA 95445. USA. E-mail: [email protected] Haliotis rugosa Lamarck, 1822, and H. pustulata Reeve, 1846, have long been a source of confusion. Herbert (1990) suggested the synonymy of the two and designated the lectotype and type locality of H. rugosa. Examination of several hundred shells of each of the two taxa has demonstrated that the H. rugosa morphology is found only on Mauritius and Reunion, while the H. pustulata morph occurs at Madagascar and the east coast of Africa, from approximately Park Rynie, South Africa, to the Red Sea and east to Yemen. No specimens from the latter localities resemble H. rugosa; however, a very small number of specimens from Mauritius have an intermediate morphology between the two taxa. The two species-level taxa are here considered as subspecies of each other. They show some overlapping shell morphology, but are geographically isolated. Abbreviations of Collections: BOC: Buzz Owen Collection, Gualala, California, USA; SBMNH: Santa Barbara Museum of Natural History, Santa Barbara, California, USA; RKC: Robert Kershaw Collection, Narooma, NSW, Australia; NGC: Norbert Göbl Collection, Gerasdorf near Vienna, Austria; HDC: Henk Dekker Collection, Winkel, The Netherlands; FFC: Franck Frydman Collection, Paris, France; MAC: Marc Alexandre Collection, Souvret, Belgium. -
Phylogeography of Geoduck Clams Panopea Generosa in Southeastern Alaska
FINAL REPORT Phylogeography of Geoduck Clams Panopea generosa in Southeastern Alaska W. Stewart Grant and William D. Templin Division of Commercial Fisheries, Alaska Department of Fish & Game, 333 Raspberry Road, Anchorage, AK 99518, USA Grant et al.: Genetics of geoduck clams 2 Abstract: Geoduck clams Panopea generosa have supported commercial fisheries in Alaska for over two decades and subsistence harvests for much longer. Increasing demands for these clams have stimulated interest in enhancing production through hatchery rearing of larvae and out- planting of juveniles. Key components to stock management and supplementation are an understanding of genetic stock structure and the development of genetic guidelines for hatchery culture and out-planting. In this study, we examined genetic variability among geoduck clams from 16 localities in southeastern Alaska and in three samples of hatchery-reared juveniles. A 684 base-pair segment of the mitochondrial (mt) DNA cytochrome oxidase 1 gene produced 168 haplotypes in 1362 clams and showed a significant excess of low-frequency haplotypes overall (Tajima’s DT = -2.63; Fu’s FS = -29.01). Haplotype diversity (h = 0.708) and nucleotide diversity (θπ = 0.0018) were moderate compared to other marine invertebrates. The analysis of molecular variance did not detect heterogeneity among samples (FST = 0.0008, P = 0.623, mean sample size N = 71.7 clams). Microsatellites showed low-frequency null alleles that produced pervasive departures from Hardy-Weinberg genotypic proportions and that distort estimates of genetic diversity. However, estimates of divergence between populations are relatively un affected because the null alleles were more or less evenly distributed among samples. -
Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone. -
Evolution of Large Body Size in Abalones (Haliotis): Patterns and Implications
Paleobiology, 31(4), 2005, pp. 591±606 Evolution of large body size in abalones (Haliotis): patterns and implications James A. Estes, David R. Lindberg, and Charlie Wray Abstract.ÐKelps and other ¯eshy macroalgaeÐdominant reef-inhabiting organisms in cool seasÐ may have radiated extensively following late Cenozoic polar cooling, thus triggering a chain of evolutionary change in the trophic ecology of nearshore temperate ecosystems. We explore this hypothesis through an analysis of body size in the abalones (Gastropoda; Haliotidae), a widely distributed group in modern oceans that displays a broad range of body sizes and contains fossil representatives from the late Cretaceous (60±75 Ma). Geographic analysis of maximum shell length in living abalones showed that small-bodied species, while most common in the Tropics, have a cosmopolitan distribution, whereas large-bodied species occur exclusively in cold-water ecosys- tems dominated by kelps and other macroalgae. The phylogeography of body size evolution in extant abalones was assessed by constructing a molecular phylogeny in a mix of large and small species obtained from different regions of the world. This analysis demonstrates that small body size is the plesiomorphic state and largeness has likely arisen at least twice. Finally, we compiled data on shell length from the fossil record to determine how (slowly or suddenly) and when large body size arose in the abalones. These data indicate that large body size appears suddenly at the Miocene/Pliocene boundary. Our ®ndings support the view that ¯eshy-algal dominated ecosys- tems radiated rapidly in the coastal oceans with the onset of the most recent glacial age. -
Physiological Responses of the Abalone Haliotis Discus
www.nature.com/scientificreports OPEN Physiological responses of the abalone Haliotis discus hannai to daily and seasonal temperature Received: 11 March 2019 Accepted: 17 May 2019 variations Published: xx xx xxxx Hee Yoon Kang1, Young-Jae Lee1, Woo-Young Song1, Tae-Ik Kim2, Won-Chan Lee3, Tae Young Kim 1 & Chang-Keun Kang1 Organisms inhabiting tidal mixing-front zones in shallow temperate seas are subjected to large semidiurnal temperature fuctuations in summer. The ability to optimize energy acquisition to this episodic thermal oscillation may determine the survival, growth and development of these ectotherms. We compared the physiological and molecular responses of Haliotis discus hannai cultivated in suspended cages to fuctuating or stable temperature conditions. Several physiological indicators (respiration, excretion rates and O:N) were measured in both conditions, and alterations in the proteome during thermal fuctuations were assessed. No summer mortality was observed in abalone cultivated in fuctuating temperatures compared with that at stable high temperatures. Metabolic rates increased sharply during stable warm summer conditions and fuctuated in accordance with short-term temperature fuctuations (20–26 °C). Ammonia excretion rates during acute responses were comparable in both conditions. When abalone were exposed to fuctuating temperatures, enzyme activities were downregulated and structure-related protein expression was upregulated compared with that at an acclimation temperature (26 °C), highlighting that exposure to low temperatures during fuctuations alters molecular processes. Our results reveal that modulation of physiological traits and protein expression during semidiurnal thermal fuctuations may bufer abalone from the lethal consequences of extreme temperatures in summer. Te temperature dependence of physiological processes in marine ectotherms is well recognized1,2. -
Enhancement of Red Abalone Haliotis Rufescens Stocks at San Miguel Island: Reassessing a Success Story
MARINE ECOLOGY PROGRESS SERIES Vol. 202: 303–308, 2000 Published August 28 Mar Ecol Prog Ser NOTE Enhancement of red abalone Haliotis rufescens stocks at San Miguel Island: reassessing a success story Ronald S. Burton1,*, Mia J. Tegner 2 1Marine Biology Research Division and 2 Marine Life Research Group, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA ABSTRACT: Outplanting of hatchery-reared juvenile abalone quences of such practices? How can the success of has received much attention as a strategy for enhancement of costly outplants be assessed? Such questions point to depleted natural stocks. Most outplants attempted to date conflicting needs regarding the genetic composition of appear to have been unsuccessful. However, based on genetic analyses of a population sample taken in 1992, it has outplanted organisms. Where large numbers of organ- recently been suggested that a 1979 outplanting of red isms are artificially released into a depleted popula- abalone Haliotis rufescens, on the south side of San Miguel tion, substantial changes in the genetic composition of Island (California, USA), was successful and probably sus- natural populations may occur (e.g., Tringali & Bert tained the fishery there through the 1980s. We resampled the San Miguel population in 1999 and found no genetic signa- 1998, Utter 1998). A variety of scenarios suggest that ture of the outplants. Allelic frequencies in our 1999 sample wholesale changes in genetic composition of natural closely resemble those observed in a pre-outplant 1979 south- populations may be undesirable at best and potentially ern California sample and two 1999 northern California pop- disastrous. -
Blacklip Abalone (Haliotis Rubra) Exploitation Status Overfished to Recruitment Overfished
I & I NSW WILD FISHERIES RESEARCH PROGRAM Blacklip Abalone (Haliotis rubra) EXPLOITATION STATUS OVERFISHED TO RECRUITMENT OVERFISHED Stock is currently recovering from historically low levels that occurred due to a combination of overfishing and mortality due to the parasite Perkinsus sp. There are concerns about possible recruitment overfishing in the northern regions. SCIENTIFIC NAME STANDARD NAME COMMENT Haliotis rubra Blacklip abalone Haliotis rubra Image © Bernard Yau Background Blacklip abalone (Haliotis rubra) is a large, juveniles and adults all occur in the same flattened marine gastropod mollusc which habitat. This suggests that local recruitment occurs in rocky reef habitats on the south- is dependent on the proximity of adults. This, eastern Australian coastline from northern combined with the restricted movement NSW to Rottnest Island in Western Australia, of adult abalone, gives rise to stocks which including Tasmania. Blacklip abalone form are spatially highly structured. Increasingly the basis of the abalone fishery in NSW. The sophisticated management regimes are species is also harvested in the other southern being developed to properly account for this Australian states along with the greenlip structuring. abalone H. laevigata. The bulk of the Australian Commercially, blacklip abalone are harvested production of abalone is exported to lucrative by endorsed divers, usually using compressed markets in south-east Asia. air supplied from a hookah unit, although Blacklip abalone can live for over in some cases SCUBA or free diving may be 20 years and can reach a maximum size of used. A chisel shaped abalone iron is used to 22 cm shell length (SL) and a weight of over pry the abalone away from the rock surface. -
Training Workshop on the Taxonomy of Marine Molluscs Mauritius, October 2017
Training workshop on the taxonomy of marine molluscs Mauritius, October 2017 Introduction IOC Biodiversity and MOI organized a regional workshop in Mauritius in October 2017 for 4 days. The main objective of the workshop were (i) to train regional marine biologists to the taxonomy of molluscs, (ii) to build capacities in the description and identification of molluscs, (iii) to assess the mollusc biodiversity and its evolution in tropical marine ecosystems. Figure 1: Le Bouchon sampling site Material and Methods About 20 participants attended the workshop with about half of them from Mauritius and the others from Madagascar, Comoros, Kenya and Tanzania. The workshop was led by an Australian expert. The workshop followed these 3 steps: - Day 1: Formal classroom training about taxonomy, molluscs and shells features. Generals information slide about molluscs were projected. - Day 2: Field sampling in Mauritius at Le Bouchon (South-east coast). The sampling was performed in various biotopes provided at the location: beach, rocky shore, mangrove and lagoon. Lagoon itself provided various environments (live coral, rubbles, sand, grass, silt). Some samplers were on foot and other snorkelling. The only method used was hand picking of shells during one hour. Shells were either dead (empty or crabbed) or alive with limitation of 1 specimen per species. The objective of the sampling was not quantitative but qualitative. The shells have been washed and put to dry in the lab after the field collection. - Day 3-4: Analysis of the samples sorted and numbered by kind and appearance. Participants had to write a description of as many species as they could in group of 2-3. -
Growth Inhibition of Red Abalone (Haliotis Rufescens) Infested with an Endolithic Sponge (Cliona Sp.)
GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) By Kirby Gonzalo Morejohn A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Science In Natural Resources: Biology May, 2012 GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) HUMBOLDT STATE UNIVERSITY By Kirby Gonzalo Morejohn We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Science. ________________________________________________________________________ Dr. Sean Craig, Major Professor Date ________________________________________________________________________ Dr. Tim Mulligan, Committee Member Date ________________________________________________________________________ Dr. Frank Shaughnessy, Committee Member Date ________________________________________________________________________ Dr. Laura Rogers-Bennett, Committee Member Date ________________________________________________________________________ Dr. Michael Mesler, Graduate Coordinator Date ________________________________________________________________________ Dr. Jená Burges, Vice Provost Date ii ABSTRACT Understanding the effects of biotic and abiotic pressures on commercially important marine species is crucial to their successful management. The red abalone (Haliotis rufescensis) is a commercially -
Growth-Related Gene Expression in Haliotis Midae
GROWTH‐RELATED GENE EXPRESSION IN HALIOTIS MIDAE Mathilde van der Merwe Dissertation presented for the degree of Doctor of Philosophy (Genetics) at Stellenbosch University Promoter: Dr Rouvay Roodt‐Wilding Co‐promoters: Dr Stéphanie Auzoux‐Bordenave and Dr Carola Niesler December 2010 Declaration By submitting this dissertation, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 09/11/2010 Copyright © 2010 Stellenbosch University All rights reserved I Acknowledgements I would like to express my sincere gratitude and appreciation to the following persons for their contribution towards the successful completion of this study: Dr Rouvay Roodt‐Wilding for her continued encouragement, careful attention to detail and excellent facilitation throughout the past years; Dr Stéphanie Auzoux‐Bordenave for valuable lessons in abalone cell culture and suggestions during completion of the manuscript; Dr Carola Niesler for setting an example and providing guidance that already started preparing me for a PhD several years ago; Dr Paolo Franchini for his patience and greatly valued assistance with bioinformatics; Dr Aletta van der Merwe and my fellow lab‐colleagues for their technical and moral support; My dear husband Willem for his love, support and enthusiasm, for sitting with me during late nights in the lab and for making me hundreds of cups of tea; My parents for their love and encouragement and for instilling the determination in me to complete my studies; All my family and friends for their sincere interest.