Growth Inhibition of Red Abalone (Haliotis Rufescens) Infested with an Endolithic Sponge (Cliona Sp.)

Total Page:16

File Type:pdf, Size:1020Kb

Growth Inhibition of Red Abalone (Haliotis Rufescens) Infested with an Endolithic Sponge (Cliona Sp.) GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) By Kirby Gonzalo Morejohn A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Science In Natural Resources: Biology May, 2012 GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) HUMBOLDT STATE UNIVERSITY By Kirby Gonzalo Morejohn We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Science. ________________________________________________________________________ Dr. Sean Craig, Major Professor Date ________________________________________________________________________ Dr. Tim Mulligan, Committee Member Date ________________________________________________________________________ Dr. Frank Shaughnessy, Committee Member Date ________________________________________________________________________ Dr. Laura Rogers-Bennett, Committee Member Date ________________________________________________________________________ Dr. Michael Mesler, Graduate Coordinator Date ________________________________________________________________________ Dr. Jená Burges, Vice Provost Date ii ABSTRACT Understanding the effects of biotic and abiotic pressures on commercially important marine species is crucial to their successful management. The red abalone (Haliotis rufescensis) is a commercially important mollusc, whose shell surface is frequently populated with bright yellow colonies of Cliona sp., an endolithic sponge known to excavate substrates on which it grows. To determine whether a relationship exists between the growth of red abalone and infestation by Cliona sp., divers with the California Department of Fish and Game surveyed abalone in multiple areas within Mendocino and Sonoma counties. Individual abalone (n = 786) were scored for shell length and relative shell coverage by Cliona sp. Animals were tagged, released and resurveyed one year later (12±2 mo). Statistical analyses of this previously unpublished data demonstrated a significant, inverse correlation between the growth of red abalone and extent of shell coverage by Cliona sp. Red abalone acquiring even minimal infestation by Cliona sp. showed significantly inhibited shell growth, with the growth of smaller abalone affected to a greater degree than larger animals. Further surveys by this author in 2010 and 2011 were conducted to determine whether differences exist between the frequency and extent of Cliona sp. infestation of red abalone located in Humboldt County (n =89) versus Mendocino County (n = 106). The frequency of infestation in these counties was not significantly different, but the extent of Cliona sp. infestation was found to be significantly greater in Mendocino County than in Humboldt County. The results strongly suggest that red abalone growth is inhibited by Cliona sp. infestation and iii that regions of the northern California abalone fishery are differentially impacted by this infestation. iv ACKNOWLEDGEMENTS I would like to extend special thanks to Dr. Sean Craig for providing me this great opportunity, to Dr. Laura Rogers-Bennett for crucial advice, direction, and enthusiasm, as well as supplying much of the data used, and to thank Dr. Robert Van Kirk for his patience, mastery, and unrelenting guidance through the statistical analyses. I also thank Dr. Steven Shultz, Dr. John DeMartini and all of the other California Department of Fish and Game divers who for years collected subsurface data. I greatly appreciate discussions with Dr. John DeMartini, who provided insights on specifics of north coast abalone populations. Thanks also to, Andrew Weltz and Sam Parker for their expertise in and under water, as well as in traversing the steep Humboldt cliffs, and Humboldt State University DSO Rich Alvarez for his training and willingness to make sure this project was done safely. I also thank John Banks for supplying Banks Board surface floats used in data collection. Most of all, I would like to thank my parents, Dr. Brooke S. Kirby and Dr. Louis C. Morejohn. Their guidance and criticism was invaluable in the creation of this thesis, and because they have surely read it more times than they would have liked, I am dedicating it to them. v TABLE OF CONTENTS Page ABSTRACT . iii ACKNOWLEDGEMENTS . v LIST OF FIGURES . vii INTRODUCTION . 1 MATERIALS AND METHODS . 11 RESULTS . 18 DISCUSSION . 23 LITERATURE CITED . 27 PERSONAL COMMUNICATION . 34 vi LIST OF FIGURES Figure Page 1 Map Locations of Humboldt County, Mendocino County, and Hardy Creek.. 3 2 Normal Red Abalone Shell with No Apparent Infestation by Cliona sp. 6 3 Infested Red Abalone Shell Exhibiting Yellow Colonies of Cliona sp. 7 4 Map of Survey Sites in Humboldt County . 14 5 Map of Sampling Sites in Mendocino County . 15 6 Growth of Red Abalone Exhibiting an Absence or Gain of Cliona sp. Infestation . 20 7 Relationship Between Red Abalone Growth Rate and Infestation by Cliona sp . 21 vii 1 INTRODUCTION Commercial and recreational fisheries of abalone (Haliotis spp.) once thrived in southern California, with annual landings surpassing 2,000 metric tons throughout the 1950s and 1960s (Karpov et al. 2000). These fisheries collapsed due to improper management, disease and sea otter predation, and in 1996 they were subsequently closed in all areas south of San Francisco Bay (Karpov et al. 2000, Haaker et al. 2001, Micheli et al. 2008, CDFG Code 5521). Since the implementation of this closure, two of California’s five targeted abalone species, the white abalone (Haliotis sorensini) and black abalone (Haliotis cracherodii), have been placed on the endangered species list (Lundy 1997, Federal Register 66: 103, June 2001, Federal Register 74: 9, January, 2009). In contrast to southern California, the northern California fishery continues to maintain recreational harvests of the most heavily targeted species, the red abalone (Haliotis rufescens; Tegner et al. 1992, Karpov et al. 2000). The continued survival of the northern California fishery is commonly thought to result from longstanding prohibitions against commercial fishing and recreational take by means of SCUBA (Karpov et al. 1998). Recreational fishing has been and remains limited to freediving (breath hold), which limits abalone take to relatively shallow depths and results in deep water abalone refugia. Readily accessible inshore abalone populations are thought to be replenished in part by the spawning and migration of deep water animals into shallower water habitats (Ault and DeMartini 1987, Karpov et al. 1998). This fishery is heavily monitored by annual fishery-independent SCUBA surveys, 2 shore-based creel surveys, mandatory abalone report cards, and telephone surveys (CDFG: Abalone Recovery and Management Plan). The SCUBA surveys are conducted by the California Department of Fish and Game (CDFG) in multiple areas within Sonoma and Mendocino counties, and while these two counties account for the bulk of California’s total abalone landings, thousands more are taken from outside of county borders (CDFG: Abalone Report Card Data and Information 2009). In nearly every year during the period 2002-2009, more than 5,000 abalone were taken from Humboldt County (CDFG: Abalone Report Card Data and Information 2009). Among the five coastal counties in northern California, Humboldt County has the largest expanse of coastline, with infrequent rocky reefs scattered within large expanses of sandy beaches. Recreational diving in Humboldt County is known for its remoteness and the difficulty of coastal access, with lower abalone densities and poor freediving conditions along with low visibility and strong surf (Friedman and Finley 2003, pers. obs.) A marked change in oceanic conditions occurs approximately 37 km south of the Mendocino-Humboldt County border, near Hardy Creek (John DeMartini pers. comm.) (Fig. 1). South of this area the conditions are generally better for diving, with clearer and calmer waters (John DeMartini pers. comm.). Abalone residing south of Hardy Creek are found at depths of up to 25 m, whereas animals to the north are rarely found deeper than 6 m (Tegner et al. 1992, John DeMartini pers. comm.). The shallow depth- wise distribution in the latter area allows freediver access to virtually all abalone, and deep-water refugia appear to be absent (John DeMartini pers. comm.). The lack of deep- water refugia for the Humboldt County population may make these populations 3 Figure 1. Map Locations of Humboldt County, Mendocino County, and Hardy Creek. 4 especially vulnerable, requiring close monitoring to ensure maintenance of healthy populations. Many marine invertebrates exhibit non-linear growth rates over their life span. Different size classes of a given species may exhibit very different growth rates, which require the use of non-linear growth modeling (Day and Fleming 1992, Rogers-Bennett et al. 2007). Rogers- Bennett et al. (2007) derived red abalone growth rates from tag- recapture data, estimating years to reach minimum legal size (MLS) to be 12.4±1 y (Rogers-Bennett et al. 2007). Protecting larger size classes has been shown in some species to have the greatest positive effects on population growth (Gotelli 1991, Heppell et al. 2006). In a study performed by Rogers-Bennett and Leaf (2006) examining red abalone, the pattern of larger, mature size classes having greater impacts
Recommended publications
  • Notes on the Correct Taxonomic Status of Haliotis Rugosa
    Zootaxa 3646 (2): 189–193 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3646.2.7 http://zoobank.org/urn:lsid:zoobank.org:pub:EC2E6CDF-39A7-4392-9586-81F9ABD1EB39 Notes on the correct taxonomic status of Haliotis rugosa Lamarck, 1822, and Haliotis pustulata Reeve, 1846, with description of a new subspecies from Rodrigues Island, Mascarene Islands, Indian Ocean (Mollusca: Vetigastropoda: Haliotidae) BUZZ OWEN P.O. Box 601, Gualala, CA 95445. USA. E-mail: [email protected] Haliotis rugosa Lamarck, 1822, and H. pustulata Reeve, 1846, have long been a source of confusion. Herbert (1990) suggested the synonymy of the two and designated the lectotype and type locality of H. rugosa. Examination of several hundred shells of each of the two taxa has demonstrated that the H. rugosa morphology is found only on Mauritius and Reunion, while the H. pustulata morph occurs at Madagascar and the east coast of Africa, from approximately Park Rynie, South Africa, to the Red Sea and east to Yemen. No specimens from the latter localities resemble H. rugosa; however, a very small number of specimens from Mauritius have an intermediate morphology between the two taxa. The two species-level taxa are here considered as subspecies of each other. They show some overlapping shell morphology, but are geographically isolated. Abbreviations of Collections: BOC: Buzz Owen Collection, Gualala, California, USA; SBMNH: Santa Barbara Museum of Natural History, Santa Barbara, California, USA; RKC: Robert Kershaw Collection, Narooma, NSW, Australia; NGC: Norbert Göbl Collection, Gerasdorf near Vienna, Austria; HDC: Henk Dekker Collection, Winkel, The Netherlands; FFC: Franck Frydman Collection, Paris, France; MAC: Marc Alexandre Collection, Souvret, Belgium.
    [Show full text]
  • Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
    Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone.
    [Show full text]
  • Evolution of Large Body Size in Abalones (Haliotis): Patterns and Implications
    Paleobiology, 31(4), 2005, pp. 591±606 Evolution of large body size in abalones (Haliotis): patterns and implications James A. Estes, David R. Lindberg, and Charlie Wray Abstract.ÐKelps and other ¯eshy macroalgaeÐdominant reef-inhabiting organisms in cool seasÐ may have radiated extensively following late Cenozoic polar cooling, thus triggering a chain of evolutionary change in the trophic ecology of nearshore temperate ecosystems. We explore this hypothesis through an analysis of body size in the abalones (Gastropoda; Haliotidae), a widely distributed group in modern oceans that displays a broad range of body sizes and contains fossil representatives from the late Cretaceous (60±75 Ma). Geographic analysis of maximum shell length in living abalones showed that small-bodied species, while most common in the Tropics, have a cosmopolitan distribution, whereas large-bodied species occur exclusively in cold-water ecosys- tems dominated by kelps and other macroalgae. The phylogeography of body size evolution in extant abalones was assessed by constructing a molecular phylogeny in a mix of large and small species obtained from different regions of the world. This analysis demonstrates that small body size is the plesiomorphic state and largeness has likely arisen at least twice. Finally, we compiled data on shell length from the fossil record to determine how (slowly or suddenly) and when large body size arose in the abalones. These data indicate that large body size appears suddenly at the Miocene/Pliocene boundary. Our ®ndings support the view that ¯eshy-algal dominated ecosys- tems radiated rapidly in the coastal oceans with the onset of the most recent glacial age.
    [Show full text]
  • Enhancement of Red Abalone Haliotis Rufescens Stocks at San Miguel Island: Reassessing a Success Story
    MARINE ECOLOGY PROGRESS SERIES Vol. 202: 303–308, 2000 Published August 28 Mar Ecol Prog Ser NOTE Enhancement of red abalone Haliotis rufescens stocks at San Miguel Island: reassessing a success story Ronald S. Burton1,*, Mia J. Tegner 2 1Marine Biology Research Division and 2 Marine Life Research Group, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA ABSTRACT: Outplanting of hatchery-reared juvenile abalone quences of such practices? How can the success of has received much attention as a strategy for enhancement of costly outplants be assessed? Such questions point to depleted natural stocks. Most outplants attempted to date conflicting needs regarding the genetic composition of appear to have been unsuccessful. However, based on genetic analyses of a population sample taken in 1992, it has outplanted organisms. Where large numbers of organ- recently been suggested that a 1979 outplanting of red isms are artificially released into a depleted popula- abalone Haliotis rufescens, on the south side of San Miguel tion, substantial changes in the genetic composition of Island (California, USA), was successful and probably sus- natural populations may occur (e.g., Tringali & Bert tained the fishery there through the 1980s. We resampled the San Miguel population in 1999 and found no genetic signa- 1998, Utter 1998). A variety of scenarios suggest that ture of the outplants. Allelic frequencies in our 1999 sample wholesale changes in genetic composition of natural closely resemble those observed in a pre-outplant 1979 south- populations may be undesirable at best and potentially ern California sample and two 1999 northern California pop- disastrous.
    [Show full text]
  • Status Review of the Pinto Abalone - Decision
    Status Review of the Pinto Abalone - Decision TABLE OF CONTENTS Page Summary Sheet ............................................................................................................. 1 of 42 CR-102 ......................................................................................................................... 3 of 42 WAC 220-330-090 Crawfish, ((abalone,)) sea urchins, sea cucumbers, goose barnacles—Areas and seasons, personal-use fishery ........................................ 6 of 42 WAC 220-320-010 Shellfish—Classification .................................................................. 7 of 42 WAC 220-610-010 Wildlife classified as endangered species ....................................... 9 of 42 Status Report for the Pinto Abalone in Washington .................................................... 10 of 42 Summary Sheet Meeting dates: May 31, 2019 Agenda item: Status Review of the Pinto Abalone (Decision) Presenter(s): Chris Eardley, Puget Sound Shellfish Policy Coordinator Henry Carson, Fish & Wildlife Research Scientist Background summary: Pinto abalone are iconic marine snails prized as food and for their beautiful shells. Initially a state recreational fishery started in 1959; the pinto abalone fishery closed in 1994 due to signs of overharvest. Populations have continued to decline since the closure, most likely due to illegal harvest and densities too low for reproduction to occur. Populations at monitoring sites declined 97% from 1992 – 2017. These ten sites originally held 359 individuals and now hold 12. The average size of the remnant individuals continues to increase and wild juveniles have not been sighted in ten years, indicating an aging population with little reproduction in the wild. The species is under active restoration by the department and its partners to prevent local extinction. Since 2009 we have placed over 15,000 hatchery-raised juvenile abalone on sites in the San Juan Islands. Federal listing under the Endangered Species Act (ESA) was evaluated in 2014 but retained the “species of concern” designation only.
    [Show full text]
  • Training Workshop on the Taxonomy of Marine Molluscs Mauritius, October 2017
    Training workshop on the taxonomy of marine molluscs Mauritius, October 2017 Introduction IOC Biodiversity and MOI organized a regional workshop in Mauritius in October 2017 for 4 days. The main objective of the workshop were (i) to train regional marine biologists to the taxonomy of molluscs, (ii) to build capacities in the description and identification of molluscs, (iii) to assess the mollusc biodiversity and its evolution in tropical marine ecosystems. Figure 1: Le Bouchon sampling site Material and Methods About 20 participants attended the workshop with about half of them from Mauritius and the others from Madagascar, Comoros, Kenya and Tanzania. The workshop was led by an Australian expert. The workshop followed these 3 steps: - Day 1: Formal classroom training about taxonomy, molluscs and shells features. Generals information slide about molluscs were projected. - Day 2: Field sampling in Mauritius at Le Bouchon (South-east coast). The sampling was performed in various biotopes provided at the location: beach, rocky shore, mangrove and lagoon. Lagoon itself provided various environments (live coral, rubbles, sand, grass, silt). Some samplers were on foot and other snorkelling. The only method used was hand picking of shells during one hour. Shells were either dead (empty or crabbed) or alive with limitation of 1 specimen per species. The objective of the sampling was not quantitative but qualitative. The shells have been washed and put to dry in the lab after the field collection. - Day 3-4: Analysis of the samples sorted and numbered by kind and appearance. Participants had to write a description of as many species as they could in group of 2-3.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Serpula vermicularis reefs on very sheltered circalittoral muddy sand MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Frances Perry, Catherine Wilding, Jacqueline Hill and Dr Harvey Tyler-Walters 2020-05-27 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/41]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Perry, F., Wilding, C., Hill, J., & Tyler-Walters, H., 2020. [Serpula vermicularis] reefs on very sheltered circalittoral muddy sand. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.41.3 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2020-05-27 Serpula vermicularis reefs on very sheltered circalittoral muddy sand - Marine Life Information Network A colony of tube worms forming a small reef, Loch Creran.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • 3 Abalones, Haliotidae
    3 Abalones, Haliotidae Red abalone, Haliotis rufescens, clinging to a boulder. Photo credit: D Stein, CDFW. History of the Fishery The nearshore waters of California are home to seven species of abalone, five of which have historically supported commercial or recreational fisheries: red abalone (Haliotis rufescens), pink abalone (H. corrugata), green abalone (H. fulgens), black abalone (H. cracherodii), and white abalone (H. sorenseni). Pinto abalone (H. kamtschatkana) and flat abalone (H. walallensis) occur in numbers too low to support fishing. Dating back to the early 1900s, central and southern California supported commercial fisheries for red, pink, green, black, and white abalone, with red abalone dominating the landings from 1916 through 1943. Landings increased rapidly beginning in the 1940s and began a steady decline in the late 1960s which continued until the 1997 moratorium on all abalone fishing south of San Francisco (Figure 3-1). Fishing depleted the stocks by species and area, with sea otter predation in central California, withering syndrome and pollution adding to the decline. Serial depletion of species (sequential decline in landings) was initially masked in the combined landings data, which suggested a stable fishery until the late 1960s. In fact, declining pink abalone landings were replaced by landings of red abalone and then green abalone, which were then supplemented with white abalone and black abalone landings before the eventual decline of the abalone species complex. Low population numbers and disease triggered the closure of the commercial black abalone fishery in 1993 and was followed by closures of the commercial pink, green, and white abalone fisheries in 1996.
    [Show full text]
  • Zootaxa: Cliona Minuscula, Sp. Nov. (Hadromerida : Clionaidae) And
    Zootaxa 1312: 1–24 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1312 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Cliona minuscula, sp. nov. (Hadromerida : Clionaidae) and other bioeroding sponges that only contain tylostyles CHRISTINE HANNA LYDIA SCHÖNBERG1, STEFANIE GRASS2 & ANKE TARJA HEIERMANN2 1Centre for Marine Studies, The University of Queensland, Brisbane, St. Lucia, QLD 4072, Australia; 2present address: Carl von Ossietzky Universität Oldenburg, Fakultät 5, Institut für Biologie und Umweltwissen- schaften, Abteilung Zoomorphologie und Systematik, 26111 Oldenburg, ph +49-(0)441-7983611, fax +49- (0)441-7983250. 2Carl von Ossietzky Universität Oldenburg, Fakultät 5, Institut für Biologie und Umweltwissenschaften, Abtei- lung Zoomorphologie und Systematik, 26111 Oldenburg, ph +49-(0)441-7983611, fax +49-(0)441-7983250. Abstract A new bioeroding sponge belonging to the genus Cliona is described from the Australian Great Barrier Reef, Cliona minuscula, sp. nov. As the sponge lacked microscleres, comparison with existing clionaid species was difficult. We considered 15 other species of Cliona with only tylostyles: C. alderi, C. arenosa. C. caesia nov. comb., C. californiana, C. celata, C. delitrix, C. dissimilis, C. ecaudis, C. insidiosa, C. janitrix, C. kempi, C. laticavicola, C. macgeachii, C. millepunctata and C. peponaca. Characters of all species are presented in table-form to facilitate comparison during future studies. We listed additional species of Cliona that were not directly compared to the new species, because they were either invalid, insufficiently described, or they may not be obligate bioeroders. The form and dimensions of the megascleres of C. minuscula, sp. nov. indicated that it is distinct from all considered species.
    [Show full text]
  • Intertidal Organisms of Point Reyes National Seashore
    Intertidal Organisms of Point Reyes National Seashore PORIFERA: sea sponges. CRUSTACEANS: barnacles, shrimp, crabs, and allies. CNIDERIANS: sea anemones and allies. MOLLUSKS : abalones, limpets, snails, BRYOZOANS: moss animals. clams, nudibranchs, chitons, and octopi. ECHINODERMS: sea stars, sea cucumbers, MARINE WORMS: flatworms, ribbon brittle stars, sea urchins. worms, peanut worms, segmented worms. UROCHORDATES: tunicates. Genus/Species Common Name Porifera Prosuberites spp. Cork sponge Leucosolenia eleanor Calcareous sponge Leucilla nuttingi Little white sponge Aplysilla glacialis Karatose sponge Lissodendoryx spp. Skunk sponge Ophlitaspongia pennata Red star sponge Haliclona spp. Purple haliclona Leuconia heathi Sharp-spined leuconia Cliona celata Yellow-boring sponge Plocarnia karykina Red encrusting sponge Hymeniacidon spp. Yellow nipple sponge Polymastia pachymastia Polymastia Cniderians Tubularia marina Tubularia hydroid Garveia annulata Orange-colored hydroid Ovelia spp. Obelia Sertularia spp. Sertularia Abientinaria greenii Green's bushy hydroid Aglaophenia struthionides Giant ostrich-plume hydroid Aglaophenia latirostris Dainty ostrich-plume hydroid Plumularia spp. Plumularia Pleurobrachia bachei Cat's eye Polyorchis spp. Bell-shaped jellyfish Chrysaora melanaster Striped jellyfish Velella velella By-the-wind-sailor Aurelia auria Moon jelly Epiactus prolifera Proliferating anemone Anthopleura xanthogrammica Giant green anemone Anthopleura artemissia Aggregated anemone Anthopleura elegantissima Burrowing anemone Tealia lofotensis
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]