Convective Drying of Osmo-Treated Abalone (Haliotis Rufescens) Slices: Diffusion, Modeling, and Quality Features
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone. -
Enhancement of Red Abalone Haliotis Rufescens Stocks at San Miguel Island: Reassessing a Success Story
MARINE ECOLOGY PROGRESS SERIES Vol. 202: 303–308, 2000 Published August 28 Mar Ecol Prog Ser NOTE Enhancement of red abalone Haliotis rufescens stocks at San Miguel Island: reassessing a success story Ronald S. Burton1,*, Mia J. Tegner 2 1Marine Biology Research Division and 2 Marine Life Research Group, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA ABSTRACT: Outplanting of hatchery-reared juvenile abalone quences of such practices? How can the success of has received much attention as a strategy for enhancement of costly outplants be assessed? Such questions point to depleted natural stocks. Most outplants attempted to date conflicting needs regarding the genetic composition of appear to have been unsuccessful. However, based on genetic analyses of a population sample taken in 1992, it has outplanted organisms. Where large numbers of organ- recently been suggested that a 1979 outplanting of red isms are artificially released into a depleted popula- abalone Haliotis rufescens, on the south side of San Miguel tion, substantial changes in the genetic composition of Island (California, USA), was successful and probably sus- natural populations may occur (e.g., Tringali & Bert tained the fishery there through the 1980s. We resampled the San Miguel population in 1999 and found no genetic signa- 1998, Utter 1998). A variety of scenarios suggest that ture of the outplants. Allelic frequencies in our 1999 sample wholesale changes in genetic composition of natural closely resemble those observed in a pre-outplant 1979 south- populations may be undesirable at best and potentially ern California sample and two 1999 northern California pop- disastrous. -
Status Review of the Pinto Abalone - Decision
Status Review of the Pinto Abalone - Decision TABLE OF CONTENTS Page Summary Sheet ............................................................................................................. 1 of 42 CR-102 ......................................................................................................................... 3 of 42 WAC 220-330-090 Crawfish, ((abalone,)) sea urchins, sea cucumbers, goose barnacles—Areas and seasons, personal-use fishery ........................................ 6 of 42 WAC 220-320-010 Shellfish—Classification .................................................................. 7 of 42 WAC 220-610-010 Wildlife classified as endangered species ....................................... 9 of 42 Status Report for the Pinto Abalone in Washington .................................................... 10 of 42 Summary Sheet Meeting dates: May 31, 2019 Agenda item: Status Review of the Pinto Abalone (Decision) Presenter(s): Chris Eardley, Puget Sound Shellfish Policy Coordinator Henry Carson, Fish & Wildlife Research Scientist Background summary: Pinto abalone are iconic marine snails prized as food and for their beautiful shells. Initially a state recreational fishery started in 1959; the pinto abalone fishery closed in 1994 due to signs of overharvest. Populations have continued to decline since the closure, most likely due to illegal harvest and densities too low for reproduction to occur. Populations at monitoring sites declined 97% from 1992 – 2017. These ten sites originally held 359 individuals and now hold 12. The average size of the remnant individuals continues to increase and wild juveniles have not been sighted in ten years, indicating an aging population with little reproduction in the wild. The species is under active restoration by the department and its partners to prevent local extinction. Since 2009 we have placed over 15,000 hatchery-raised juvenile abalone on sites in the San Juan Islands. Federal listing under the Endangered Species Act (ESA) was evaluated in 2014 but retained the “species of concern” designation only. -
Growth Inhibition of Red Abalone (Haliotis Rufescens) Infested with an Endolithic Sponge (Cliona Sp.)
GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) By Kirby Gonzalo Morejohn A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Science In Natural Resources: Biology May, 2012 GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) HUMBOLDT STATE UNIVERSITY By Kirby Gonzalo Morejohn We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Science. ________________________________________________________________________ Dr. Sean Craig, Major Professor Date ________________________________________________________________________ Dr. Tim Mulligan, Committee Member Date ________________________________________________________________________ Dr. Frank Shaughnessy, Committee Member Date ________________________________________________________________________ Dr. Laura Rogers-Bennett, Committee Member Date ________________________________________________________________________ Dr. Michael Mesler, Graduate Coordinator Date ________________________________________________________________________ Dr. Jená Burges, Vice Provost Date ii ABSTRACT Understanding the effects of biotic and abiotic pressures on commercially important marine species is crucial to their successful management. The red abalone (Haliotis rufescensis) is a commercially -
Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch. -
3 Abalones, Haliotidae
3 Abalones, Haliotidae Red abalone, Haliotis rufescens, clinging to a boulder. Photo credit: D Stein, CDFW. History of the Fishery The nearshore waters of California are home to seven species of abalone, five of which have historically supported commercial or recreational fisheries: red abalone (Haliotis rufescens), pink abalone (H. corrugata), green abalone (H. fulgens), black abalone (H. cracherodii), and white abalone (H. sorenseni). Pinto abalone (H. kamtschatkana) and flat abalone (H. walallensis) occur in numbers too low to support fishing. Dating back to the early 1900s, central and southern California supported commercial fisheries for red, pink, green, black, and white abalone, with red abalone dominating the landings from 1916 through 1943. Landings increased rapidly beginning in the 1940s and began a steady decline in the late 1960s which continued until the 1997 moratorium on all abalone fishing south of San Francisco (Figure 3-1). Fishing depleted the stocks by species and area, with sea otter predation in central California, withering syndrome and pollution adding to the decline. Serial depletion of species (sequential decline in landings) was initially masked in the combined landings data, which suggested a stable fishery until the late 1960s. In fact, declining pink abalone landings were replaced by landings of red abalone and then green abalone, which were then supplemented with white abalone and black abalone landings before the eventual decline of the abalone species complex. Low population numbers and disease triggered the closure of the commercial black abalone fishery in 1993 and was followed by closures of the commercial pink, green, and white abalone fisheries in 1996. -
Karyotype of Pacific Red Abalone Haliotis Rufescens (Archaeogastropoda: Haliotidae) Using Image Analysis
Journal of Shellfish Research, Vol. 23, No. 1, 205–209, 2004. KARYOTYPE OF PACIFIC RED ABALONE HALIOTIS RUFESCENS (ARCHAEOGASTROPODA: HALIOTIDAE) USING IMAGE ANALYSIS CRISTIAN GALLARDO-ESCÁRATE,1,2 JOSUÉ ÁLVAREZ-BORREGO,2,* MIGUEL ÁNGEL DEL RÍO PORTILLA,1 AND VITALY KOBER3 1Departamento de Acuicultura. División de Oceanología, 2Departamento de Óptica, 3Departamento de Ciencias de la Computación, División de Física Aplicada, Centro de Investigación Científica y de Educación Superior de Ensenada. Km 107 Carretera Tijuana – Ensenada, Código Postal 22860. Ensenada, B.C. México ABSTRACT This report describes a karyotypic analysis in the Pacific red abalone Haliotis rufescens using image analysis. This is the first karyotype reported for this species. Chromosome number and karyotype are the basic information of a genome and important for ploidy manipulation, genomic analysis, and our understanding about chromosomal evolution. In this study we found that the diploid number of chromosomes in the red abalone was 36. Using image analysis by rank-order and digital morphologic filters, it was possible to determine total length of chromosomes and relative arm length in digitally enhanced image, elimination of noise and improving the contrast for the measurements. The karyotype consisted of eight pairs of metacentric chromosomes, eight pairs of submetacentric, one pair submetacentric/metacentric, and one pair of subtelocentric chromosomes. The black abalone, Haliotis cracherodii, also with 36 chromosomes and with a similar geographic distribution, has eight pairs of metacentric, eight pairs of submetacentric, and two pairs subtelocentric. This study contributes with new information about the karyology in the family Haliotidae found in California Coast waters and gives some support the Thetys’ model about biogeographical origin, from the Mediterranean Sea to the East Pacific Ocean. -
Shelled Molluscs
Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1. -
An Annotated Genome for Haliotis Rufescens (Red Abalone) and Resequenced Green, Pink, Pinto, Black and White Abalone Species Rick E
Genome Informatics Facility Publications Genome Informatics Facility 1-17-2019 An Annotated Genome for Haliotis rufescens (Red Abalone) and Resequenced Green, Pink, Pinto, Black and White Abalone Species Rick E. Masonbrink Iowa State University, [email protected] Catherine Purcell Ocean Associates, Inc. Sara Boles University of California, Davis Andrew Whitehead University of California, Davis John Hyde NOAA Fisheries See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/genomeinformatics_pubs Part of the Aquaculture and Fisheries Commons, and the Genomics Commons Recommended Citation Masonbrink, Rick E.; Purcell, Catherine; Boles, Sara; Whitehead, Andrew; Hyde, John; Seetharam, Arun S.; and Severin, Andrew J., "An Annotated Genome for Haliotis rufescens (Red Abalone) and Resequenced Green, Pink, Pinto, Black and White Abalone Species" (2019). Genome Informatics Facility Publications. 6. https://lib.dr.iastate.edu/genomeinformatics_pubs/6 This Article is brought to you for free and open access by the Genome Informatics Facility at Iowa State University Digital Repository. It has been accepted for inclusion in Genome Informatics Facility Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. An Annotated Genome for Haliotis rufescens (Red Abalone) and Resequenced Green, Pink, Pinto, Black and White Abalone Species Abstract Abalone are one of the few marine taxa where aquaculture production dominates the global market as a result of increasing demand and declining natural stocks from overexploitation and disease. To better understand abalone biology, aid in conservation efforts for endangered abalone species, and gain insight into sustainable aquaculture, we created a draft eg nome of the red abalone (Haliotis rufescens). -
The Importance and Persistence of Abalone (Haliotis Spp.) Along the California
The Importance and Persistence of Abalone (Haliotis spp.) along the California Coast Dr. Stevens ENVS 190 Senior Thesis Kalli Fenk Abstract Abalone was once a common sight along the California Coast. Native tribes co-existed with the species for thousands of years. They relied on if for sustenance and they used it for tools, utensils, jewelry, trading, and regalia. In return, they took care of the abalone as if it were one of their own. When colonization devastated Native Californian culture, much of their knowledge disappeared along with the species they cared for. Abalone was highly valuable for its taste and beauty. When commercialization of abalone fisheries began their populations began to decline. Now, they face more obstacles to recovery than ever before. Current abalone stressors include, poaching, low population densities, pollution, and disease. Warming ocean temperatures also subject abalone to sea level rise and ocean acidification. I recommend a combined approach of traditional ecological management and western science be used to provide adaptive management strategies for policy makers and fisheries managers. In preserving these creatures we are inherently preserving cultural heritage and traditions of over 20 tribes in California. Table of Contents Introduction……………………………………………………………………….1 Background………………………………………………………………………..2 Biology………………………………………………………………………3 Ecology……………………………………………………………………....4 Native History and Cultural Significance…………………………………...6 20th Century Population Declines…………………………………………..10 Current -
Black Abalone Status Review Report (Status Review) As Mandated by the ESA
Status Review Report for Black Abalone Status Review Report for Black Abalone (Haliotis cracherodii Leach, 1814) Glenn VanBlaricom, Melissa Neuman, John Butler, Andrew DeVogelaere, Rick Gustafson, Chris Mobley, Dan Richards, Scott Rumsey, and Barbara Taylor NMFS Southwest Region 501 West Ocean Boulevard, Suite 4200 Long Beach, CA 90802 January 2009 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Table of Contents List of Figures ................................................................................................................... iv List of Tables .................................................................................................................... vi Executive Summary ........................................................................................................ vii Acknowledgements ........................................................................................................... x 1.0 Introduction ......................................................................................................... 11 1.1 Scope and Intent of Present Document ................................................. 11 1.2 Key Questions in ESA Evaluations ....................................................... 12 1.2.1 The “Species” Question ...................................................................... 12 1.2.2 Extinction Risk .................................................................................... 12 1.3 Summary of Information Presented -
Response of Red Abalone Reproduction to Warm Water, Starvation, and Disease Stressors: Implications of Ocean Warming
Journal of Shellfish Research, Vol. 29, No. 3, 599–611, 2010. RESPONSE OF RED ABALONE REPRODUCTION TO WARM WATER, STARVATION, AND DISEASE STRESSORS: IMPLICATIONS OF OCEAN WARMING LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,3 JAMES D. MOORE1,2 AND L. IGNACIO VILCHIS4 1California Department of Fish and Game; 2U.C. Bodega Marine Laboratory, PO Box 247, Bodega Bay, CA 94923; 35342 Winding View Trail, Santa Rosa, CA 95404; 4Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093 ABSTRACT Changes in ocean temperature can have direct and indirect effects on the population dynamics of marine invertebrates. We examined the impacts of warm water, starvation, and disease on reproduction in red abalone (Haliotis rufescens). We found that sperm production was highly sensitive to warm water and starvation, suggesting there may be a dramatic temperature threshold above which sperm production fails. Wild males from northern (72%) and southern (81%) California had sperm. In contrast, only 30% of the males exposed to warm water (18°C) for 6 mo or starvation for 13 mo had sperm, with spermatogenesis dropping dramatically from 300,000 presperm cells/mm3 (wild) to 46,000 presperm cells/mm3 (warm water) and 84,000 presperm cells/mm3 (starvation). In a longer warm-water experiment (12 mo), males had total reproductive failure in temperatures greater than 16°C, irrespective of food treatment. Egg production was less sensitive to warm water, but was impacted more by starvation, especially food quantity relative to quality. Wild females from northern (97%) and southern (100%) California had mature oocytes averaging 3 million eggs and 21 million eggs, respectively.