Resonators and Waveguides for Fiber and Integrated

Ali Serpengüzel @ Koç University [email protected]

PIC 2018 Eindhoven, October 02, 2018 microphotonics.ku.edu.tr Serpengüzel 1 FORMER STUDENTS

2 microphotonics.ku.edu.tr Serpengüzel 2 Solid state photonics  electronics

(0D) photonic atom  H atom

(1D) photonic molecule  H2 molecule

(1D)  aliphatic molecule

(2D) photonic molecule  benzene molecule

(3D) photonic molecule  fullerene

(3D) photonic crystal opal  graphite lattice

(3D) metamaterial  metamaterial

? What’s next ? microphotonics.ku.edu.tr Serpengüzel 3 Sphere

Natural / ideal / most symmetric form high Q factor WGM / MDR / OR reduce thresholds for active optics generalized Lorenz-Mie theory TE / TM addressing Spatial / spectral addressing Surface (2D) / volume (3D) for sensing Evanescent connection of optical wave elegant building block for 3D integration

Serpengüzel OPN (2009) microphotonics.ku.edu.tr Serpengüzel 4 Acoustic Whispering Gallery

resonances (acoustic) a radius (a = 15 m)

velocity of sound (c = 300 m/s) St. Paul’s Cathedral, London, England, UK (1708) quantum number (n)

resonance frequency (v) c n n(n1) 2am

John William Strutt, Baron Rayleigh, “The Theory of Sound,” The Macmillan Company, London ( 1896) p . 5 1 2 6 . microphotonics.ku.edu.tr Serpengüzel 5 Optical Whispering Gallery

Lorenz-Mie Theory Resonances (optical) Radius (a) (m) Propagation vector (k) Size parameter (x) Quantum number (n) Resonance frequency (v) c n n(n1) 2am

Ludvig Lorenz: Sur la lumiere reflechie et refractee par une sphere (surface) transparente. in Oeuvres scientifiques de L. Lorenz. revues et annotees par H. Valentiner. Tome Premier, Libraire Lehmann & Stage, Copenhague, 1898, p 403-529. Gustav Mie: Beitrage zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, Vierte Folge,6 Band 25, 1908, No. 3, p 377-445. microphotonics.ku.edu.tr Serpengüzel 6 Microsphere cavity

90° scattering

Microsph ere m a

input 0° transmission

input 0° scattering (transmissio n) 

Δ1/2 90°

Scattering Intensity Scattering scattering

  n+3 n+2 n+1 n Wavelength (nm)

microphotonics.ku.edu.tr Serpengüzel 77 Gaussian beam excitation of a microsphere

glass or polymer sphere in water microphotonics.ku.edu.tr Serpengüzel 8 Silicon Microsphere in air

- microphotonics.ku.edu.tr Serpengüzel 9 Experimental Setup

InGaAs PDPD Glan Polarizer

Near-IR DSO Viewer

Microscope InGaAs PD Red probe InGaAs OFHC PWH source laser Polarization Controller Electrical input

Function USB Generator

OMM Computer LDC

GPIB

- microphotonics.ku.edu.tr Serpengüzel 10 Elastic Scattering

microphotonics.ku.edu.tr Serpengüzel 11 polarization dependence

- microphotonics.ku.edu.tr Serpengüzel 12 polarization dependence

- microphotonics.ku.edu.tr Serpengüzel 13 Silicon Microsphere setup

Electrical Probes

Silicon Microsphere

Optical Optical Fiber Half Fiber Coupler (OFHC)

- microphotonics.ku.edu.tr Serpengüzel 14 Modulation in the C-band

- microphotonics.ku.edu.tr Serpengüzel 15 Sphelar One

- microphotonics.ku.edu.tr Serpengüzel 16 solutions

- microphotonics.ku.edu.tr Serpengüzel 17 experimental setup

- microphotonics.ku.edu.tr Serpengüzel 18 position dependent response

- microphotonics.ku.edu.tr Serpengüzel 19 1 mm silicon sphere in near-IR

Data Laser Acquisition DSO Diode and Controller Storage (LDC) Computer

OM M

InGaAs Tunable PD InGaAs LD at Power 1500 nm Head

Microscope Φ = 1 mm Silicon Microsphere

SMF OFHC

- microphotonics.ku.edu.tr Serpengüzel 20 100 mm Avogadro sphere in far-IR

Data Laser Acquisition DSO Controller and (LC) Storage Computer

OM

PD M Tunable

Power Laser at Head 150 μm

Telescope

Φ = 100 mm Silicon sphere SMF OFHC

nist.gov microphotonics.ku.edu.tr Serpengüzel 21 decisphere vs. millisphere

parameter symbol 100 mm Si sphere reference 1 mm Si sphere reference

silicon molar mass (g mol-1) m(28Si) 27.976 970 09(15) 15 27.976 970 09(15) 42

silicon atoms per unit cell n 8 15 8 42

silicon lattice constant (pm) a 543.099 6219(10) 15 543.102 050 4(89) 42

silicon density (kg.m-3) ρ 2320.070 943(46) 15 2320.070 959(49) 42

23 −1 Avogadro constant (10 mol ) NA 6.022 140 72(13) 15 6.022 140 82(18) 42

23 −8 −8 standard uncertainty (10 δNA 2.0 × 10 15 3.0 × 10 42 mol−1)

silicon sphere diameter (mm)  93.710811 11(62) 15 1.020(03) this work

silicon sphere volume (cm3) V 430.891 2891(69) 15 0.004 445 1776(09) this work

silicon sphere mass (g) M 999.698 359(11) 15 0.001 222(05) this work

silicon resistivity (kΩ cm) σ −1 10 51 10 53

silicon refractive index μ 3.40 57 3.48 41

silicon absorption coefficient α 0.02 51 0.01 42 (cm-1)

silicon sphere quality factor Q 108 proposed 5 × 104 this work work

excitation wavelength (nm)  150000 proposed 1500(50) this work work

excitation frequency (THz)  2 proposed 200(07) this work work

silicon sphere size parameter x 2094 proposed 2094 this work work

silicon sphere WGM spacing Δ 25.5 proposed 0.253(11) this (nm) work work

- microphotonics.ku.edu.tr Serpengüzel 22

1 mm diamond sphere

- microphotonics.ku.edu.tr Serpengüzel 23 elastic scattering setup

- microphotonics.ku.edu.tr Serpengüzel 24 elastic scattering

- microphotonics.ku.edu.tr Serpengüzel 25 COLLABORATORS

26 microphotonics.ku.edu.tr Serpengüzel 26 Natural Connection

Natural Crossing microphotonics.ku.edu.tr Serpengüzel 27 Meandering Waveguides

C. B. Dağ, M. A. Anıl, and A. Serpengüzel, “Meandering Distributed Feedback Lightwave Circuits,” J. Lightwave Technol. 33,

1691-1702 (2015).

introduction microphotonics.ku.edu.tr Serpengüzel 28 Meandering Waveguides

basic structures microphotonics.ku.edu.tr Serpengüzel 29 Meandering Loop Mirror (MLM)

the building block microphotonics.ku.edu.tr Serpengüzel 30 Meandering Waveguides

• fiber optic meandering waveguides

• transverse mode = 1 (single mode)

• core diameter = 9 μm

• cladding diameter = 125 μm

• effective index = 1.468

• bending radius = 5 mm

• standard = ITU-T G.657

single mode fiber optics microphotonics.ku.edu.tr Serpengüzel 31 Meandering Resonator (MR)

1550.027 1550.006

wavelength (nm)

Fiber Optic Meandering Waveguide microphotonics.ku.edu.tr Serpengüzel 32 Meandering Resonator (MR)

1550.027 1550.006

10π mm

10π mm

10π mm

wavelength (nm)

Fiber Optic Meandering Waveguide microphotonics.ku.edu.tr Serpengüzel 33 Meandering DFB (MDFB)

1550.035 1550.022 1550.009

wavelength (nm)

Fiber Optic Meandering Waveguide microphotonics.ku.edu.tr Serpengüzel 34 Symmetric MR (SMR)

1550.035 1550.022 1550.009

wavelength (nm)

Fiber Optic Meandering Waveguide microphotonics.ku.edu.tr Serpengüzel 35 Symmetric MR (SMR)

1550.035 1550.022 1550.009

wavelength (nm)

Fiber Optic Meandering Waveguide microphotonics.ku.edu.tr Serpengüzel 36 Antisymmetric MR (AMR)

1550.035 1550.022 1550.009

wavelength (nm)

Fiber Optic Meandering Waveguide microphotonics.ku.edu.tr Serpengüzel 37 Symmetric DFB (SMDFB)

1550.035 1550.022 1550.009

wavelength (nm)

Fiber Optic Meandering Waveguide microphotonics.ku.edu.tr Serpengüzel 38 Antisymmetric DFB (AMDFB)

1550.035 1550.022 1550.009

wavelength (nm)

Fiber Optic Meandering Waveguide microphotonics.ku.edu.tr Serpengüzel 39 Summary

• monolithic microspheres are ideally suited for coupling to optical fibers for 3D photonic integration • monolithic distributed meandering waveguides are ideally suited for 2D and 3D photonic integration

microspheres and meandering waveguides microphotonics.ku.edu.tr Serpengüzel 40 microphotonics.ku.edu.tr

microphotonics.ku.edu.tr Serpengüzel 41