School of Physics Annual Report 2008 Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae Brian P
Curriculum Vitae Brian P. Schmidt AC FAA FRS Address: Office of the Vice Chancellor The Australian National University Canberra, ACT 2600, Australia Birthdate: 24 February 1967, Missoula Montana USA Citizenship: United States of America and Australia Telephone: +61 2 6125 2510 email: [email protected] Academic Qualifications: 1993: Ph.D. in Astronomy, Harvard University 1992: A.M. in Astronomy, Harvard University 1989: B.S. in Physics, University of Arizona 1989: B.S. in Astronomy, University of Arizona PhD thesis: Type II Supernovae, Expanding Photospheres, and the Extragalactic Distance Scale – Supervisor: Robert P. Kirshner Research and other Interests: Observational Cosmology, Studies of Supernovae, Gamma Ray Bursts, Large Surveys, Photometry and Calibration, Extremely Metal Poor Stars, Exoplanet Discovery Public Policy in the Areas of Education, Science, and Innovation Vigneron and Grape Grower: Maipenrai Vineyard and Winery Academic Positions Held: 2016- Vice Chancellor and President, The Australian National University 2013-2015 Public Policy Fellow, Crawford School, The Australian National University 2010- Distinguished Professor, The Australian National University 2010-2015 Australian Research Council Laureate Fellow (ANU) 2005-2009 Australian Research Council Federation Fellow (ANU) 2003-2005 Australian Research Council Professorial Fellow, (ANU) 1999-2002 Fellow, The Australian National University (RSAA) 1997-1999 Research Fellow, The Australian National University (MSSSO) 1995-1996 Postdoctoral Fellow, The Australian National University -
The X-Ray Universe 2011
THE X-RAY UNIVERSE 2011 27 - 30 June 2011 Berlin, Germany A conference organised by the XMM-Newton Science Operations Centre, European Space Astronomy Centre (ESAC), European Space Agency (ESA) ABSTRACT BOOK Oral Communications and Posters Edited by Andy Pollock with the help of Matthias Ehle, Cristina Hernandez, Jan-Uwe Ness, Norbert Schartel and Martin Stuhlinger Organising Committees Scientific Organising Committee Giorgio Matt (Universit`adegli Studi Roma Tre, Italy) Chair Norbert Schartel (XMM-Newton SOC, Madrid, ESA) Co-Chair M. Ali Alpar (Sabanci University, Istanbul, Turkey) Didier Barret (Centre d’Etude Spatiale des Rayonnements, Toulouse, France) Ehud Behar (Technion Israel Institute of Technology, Haifa, Israel) Hans B¨ohringer (MPE, Garching, Germany) Graziella Branduardi-Raymont (University College London-MSSL, Dorking, UK) Francisco J. Carrera (Instituto de F´ısicade Cantabria, Santander, Spain) Finn E. Christensen (Danmarks Tekniske Universitet, Copenhagen, Denmark) Anne Decourchelle (Commissariat `al’´energie atomique et aux ´energies alternatives, Saclay, France) Jan-Willem den Herder (SRON, Utrecht, The Netherlands) Rosario Gonzalez-Riestra (XMM-Newton SOC, Madrid, ESA) Coel Hellier (Keele University, UK) Stefanie Komossa (MPE, Garching, Germany) Chryssa Kouveliotou (NASA/Marshall Space Flight Center, Huntsville, Alabama, USA) Kazuo Makishima (University of Tokyo, Japan) Sera Markoff (University of Amsterdam, The Netherlands) Brian McBreen (University College Dublin, Ireland) Brian McNamara (University of Waterloo, Canada) -
Judd D. Bowman 2018 October 29 Curriculum Vitae Page 1 of 38
Judd D. Bowman 2018 October 29 Curriculum Vitae JUDD D. BOWMAN CURRICULUM VITAE Associate Professor (480) 965-8880 Arizona State University [email protected] School of Earth and Space Exploration loco.lab.asu.edu ISTB4 / 781 E Terrace Mall / Tempe AZ, 85287 EDUCATION 2007 Massachusetts Institute of Technology, Ph.D. Physics 1998 Washington University in St. Louis, B.S. Physics 1998 Washington University in St. Louis, B.S. Electrical Engineering PROFESSIONAL EXPERIENCE 2014-present Associate Professor, School of Earth and Space Exploration, Arizona State University 2014-present Project Scientist, Hydrogen Epoch of Reionization Array (HERA) 2010-present Co-Director, ASU Cosmology Initiative 2010-2015 Project Scientist, Murchison Widefield Array (MWA) 2010-2014 Assistant Professor, School of Earth and Space Exploration, Arizona State University 2007-2010 Hubble Fellow, California Institute of Technology 2002-2007 Research Assistant, Massachusetts Institute of Technology 2001-2002 Task Lead, 3D Visualization and Surface Reconstruction, QSS Group, Inc. 2000-2002 Computer Scientist III, QSS Group, Inc. (NASA Ames Research Center) 1998-2000 Systems Analyst, Earth & Planetary Sciences, Washington University in St. Louis HONORS AND AWARDS 2014 Top 10 Most Influential Papers of Advances in Space Research, Burns et al. 2012 2014 Outstanding Faculty Nominee, College of Liberal Arts and Sciences Residential Life/University Housing, ASU 2012 Nancy Grace Roman Early-Career Technology Fellowship, NASA 2010 Jansky Postdoctoral Fellowship, NRAO (declined) -
10. Scientific Programme 10.1
10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic -
The Task Cards
HEROES HEROES TASK CARD 1 TASK CARD 2 HERO RECEIVES PURPLE CROSS YOUNG AUSTRALIAN OF THE YEAR The Young Australian of the Year has been awarded since 1979. It Read the story about Sarbi and answer these questions. recognises the outstanding achievement of young Australians aged 16 to 30 and the contributions they have made to our communities. 1. What colour is associated with the Australian Special Forces? YEAR Name of Recipient Field of Achievement 2011 Jessica Watson 2. What breed of dog is Sarbi? 2010 Trooper Mark Donaldson VC 2009 Jonty Bush 3. What is Sarbi trained to do? 2008 Casey Stoner 2007 Tania Major 4. What type of animal has also received 2006 Trisha Broadbridge the Purple Cross for wartime service? 2005 Khoa Do 2004 Hugh Evans 5. In which country was Sarbi working 2003 Lleyton Hewitt when she went missing? 2002 Scott Hocknull 2001 James Fitzpatrick 6. How was Sarbi identified when she was found? 2000 Ian Thorpe OAM 1999 Dr Bryan Gaensler 7. What does MIA stand for? 1998 Tan Le 1997 Nova Peris OAM 8. Which word in the text means ‘to attack by surprise’? 1996 Rebecca Chambers 1995 Poppy King 9. How many days was Sarbi missing for? Find out what each of these people received their Young Australian 10. Why did Sarbi receive the Purple cross? Award for. Use this list of achievements to help you. Concert pianist; Astronomer; Champion Tennis Player; Sailor; Palaeontologist; MotoGP World Champion; Business Woman; World Champion Swimmer; Youth Leader & Tsunami Survivor; Anti-poverty Campaigner; Olympic Gold Medallist Athlete; Victim -
Magnetic Universe by BRYAN GAENSLER
The Magnetic Universe BY BRYAN GAENSLER Magnets are everywhere, but we don’t know how they got here. agnets have been part of our weak magnet. Modern understanding is where they fluoresce in the atmosphere lives since antiquity. The that the rotation of the Earth induces and generate the aurorae. Mancient Greeks wrote of the currents in electrically conducting mate- Several other planets in the solar mineral lodestone (which they called the rial in the planet’s core. This drives a system (most notably Jupiter and Saturn) “stone of Magnesia”) and its ability to process called a “dynamo”, which gener- are also magnetic, as is the Sun itself. The attract iron. For centuries until the advent ates an overall planetary magnetic field. Sun’s magnetism is responsible for a whole of GPS, navigation relied on the fact that At the moment, the magnet inside the range of phenomena, such as sunspots, a compass will always point north. And Earth lines up almost exactly with the solar flares and coronal mass ejections. remarkably, some bird species seem to be Earth’s spin axis. So just as a paper clip On average the Sun’s magnetism has able to actually see magnetic fields, will be attracted to the end of a toy about the same strength as the Earth’s, allowing them to unerringly migrate over magnet, a compass needle will be but in sunspots the magnetic field is about thousands of kilometres. attracted to the Earth’s pole. 1000 times higher. Such spectacular feats of navigation Ingenious techniques have allowed rely on the fact that the entire Earth is a Magnetic Planets astronomers to also study magnetism in and Magnetic Stars other, much more distant stars. -
NL#135 May/June
May/June 2007 Issue 135 A Publication for the members of the American Astronomical Society 3 IOP to Publish President’s Column AAS Journals J. Craig Wheeler, [email protected] Whew! A lot has happened! 5 Member Deaths First, my congratulations to John Huchra who was elected to be the next President of the Society. John will formally become President-Elect at the meeting in Hawaii. He will then take over as President at the meeting in St. Louis in June of 2008 and I will serve as Past-President until the 6 Pasadena meeting in June of 2009. We have hired a consultant to lead a one-day Council retreat before the Hawaii meeting to guide the Council toward a more strategic outlook for the Society. Seattle Meeting John has generously agreed to join that effort. I know he will put his energy, intellect, and experience Highlights behind the health and future of the Society. We had a short, intense, and very professional process to issue a Request for Proposals (RFP) to 10 publish the Astrophysical Journal and the Astronomical Journal, to evaluate the proposals, and Award Winners to select a vendor. We are very pleased that the IOP Publishing will be the new publisher of our cherished and prestigious journals and are very optimistic that our new partnership will lead to in Seattle a necessary and valuable evolution of what it means to publish science journals in the globally- connected electronic age. 11 The complex RFP defining our journals and our aspirations for them was put together by a team International consisting of AAS representatives and outside independent consultants. -
Recent Trends in Micro- and Nanophotonics: a Personal Selection
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 13, No. 9, September 2011, p. 1055 - 1066 Recent trends in micro- and nanophotonics: A personal selection D. MIHALACHE Horia Hulubei National Institute for Physics and Nuclear Engineering, P. O. B. MG-6, 077125 Magurele, Romania I give a brief overview of some recent results in micro- and nanophotonics. Due to the vast amount of research activity in these exploding areas I only concentrate on selected recent advances in (a) silicon photonics, (b) spatial and spatiotemporal optical solitons (alias light bullets) in microwaveguide arrays and in arrays of evanescently-coupled silicon- on-insulator nanowires, (c) spatial solitons in photorefractive materials, (d) nanoplasmonics, (e) photonic crystals, (f) metamaterials for micro- and nanophotonics including optical materials with negative refractive indices, (g) terahertz radiation and its applications, and (h) solid-state single photon sources and nanometric size optical cavities for quantum information processing. (Received August 12, 2011; accepted September 15, 2011) Keywords: Microphotonics, Nanophotonics, Silicon photonics, Plasmonics, Photonic crystals, Spatial optical solitons, Light bullets, Plasmonic lattice solitons, Metamaterials, Terahertz radiation 1. Introduction for biosensing and chemical sensing applications, ability of metal nanoparticles to act as efficient pointlike sources The term “photonics” was coined in 1967 by Pierre of both light and heat, and subwavelength plasmonic Aigrain, a French scientist, who gave the following lattice solitons in arrays of metallic nanowires embedded definition: “Photonics is the science of the harnessing of in nonlinear Kerr media will be briefly discussed. light. Photonics encompasses the generation of light, the Section 4 is devoted to recent advances in the study of detection of light, the management of light through photonic crystals and metamaterial structures (including guidance, manipulation, and amplification, and most engineered media with negative refractive indices). -
AGM Minutes 2017 1 Minutes of the 51St Annual General Meeting Held at 11.30 Am, Wednesday 12 July 2017 Molonglo Theatre Crawford
Minutes of the 51st Annual General Meeting held at 11.30 am, Wednesday 12 July 2017 Molonglo Theatre Crawford School of Public Policy The Australian National University The Meeting was opened at 11:45 am with the President in the Chair and approximately 90 members of all grades in attendance. 1. Apologies Anne Green, Andrew Hopkins. 2. Minutes of the 50th Annual General Meeting Motion that the minutes of the 50th Annual General Meeting be accepted. Wyithe/Spitler Carried 3. Business arising from the Minutes None. 4. President's Report The President, Virginia Kilborn, presented a Powerpoint version of the official written report (below). 1. Council Members 2016-2017 Virginia Kilborn President Stuart Wyithe Vice President Andrew Hopkins Immediate Past President John O’Byrne Secretary Marc Duldig Secretary Kate Gunn Treasurer Cath Trott Councilor Lee Spitler Councilor Duncan Galloway Councilor Naomi McClure-Griffiths Councilor Chris Power Councilor Chris Curtin Student Representative Daniel Price (Ex-officio) Chair, PASA Editorial Board Tanya Hill (Co-opted) Prizes and Awards co-ordinator Michael Brown (Co-opted) Media and Outreach co-ordinator Late last year, the ASA Council accepted the resignation of Duncan Galloway as Vice President. Article 16 of the Constitution states that the Council may invite a person to fill a vacancy and Stuart Wyithe agreed to take over as Vice President. Duncan Galloway remained on Council to fill the position vacated by Stuart. Many thanks to Duncan for his contributions to council as Vice President since July 2015. The ASA Council also accepted the resignation of Ravi Sood as Treasurer. Once again via article 16 of the Constitution Kate Gunn agreed to take over as Treasurer. -
EPIC Annual Report 2008
2008 ANNUAL REPORT 1 Annual Report 2008 TABLE OF CONTENTS Table of Contents Page 2 President’s Overview Page 3 Report of the General Secretary Page 4 Summary Balance Sheet Page 5 EPIC Workshops and Symposia Pages 6-7 CD Reports Page 7 Market Reports Page 8 EPIC Conferences and Meetings Page 9 Publications 2008-2009 Page 9 Invest in Photonics Page 10 EPIC Participation in European Projects Pages 11 Newly-funded European Projects Page 12 New Members Page 13 List of EPIC Members Pages 14-15 2 Annual Report 2008 WORD FROM THE PRESIDENT by Jean-François COUTRIS At the end of 2008, EPIC celebrated its 5th anniversary of bringing more value to its members. Starting with 5 founding members in 2003, of which Sagem was one, EPIC has grown to 80 members throughout Europe today. We are widely recognised as a strong contributing force to building photonics businesses in Europe with commercial presence around the world. The impact of EPIC comes from the concerted action of its members in focus areas designated by the membership and implemented by your Secretary General and the governing Board. The administration of EPIC has built a strong foundation for our activities as a consortium. The financial results of 2008 were posi- tive with a healthy increase in our strategic reserves. The budget for 2009 is balanced, and there will be no increase in annual membership fees, maintaining a 5-year tradition. Your Board of Governors has re-elected me to a second term as President, and I Jean-François Coutris, am pleased and honoured to accept this responsibility. -
Silicon Photonics
IPSR-I ENABLING TECHNOLOGIES SILICON PHOTONICS Contents Silicon Photonics .....................................................................................................................................1 Executive Summary ................................................................................................................................3 Introduction .............................................................................................................................................8 Infrastructure Analysis ..........................................................................................................................10 Manufacturing Equipment ...................................................................................................................... 10 Wafers and Epitaxy .............................................................................................................................................11 Lithography .........................................................................................................................................................13 Etching.................................................................................................................................................................13 Other technology modules ...................................................................................................................................14 Manufacturing Processes ....................................................................................................................... -
Air-Clad Silicon Pedestal Structures for Broadband Mid-Infrared Microphotonics
Air-clad silicon pedestal structures for broadband mid-infrared microphotonics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Lin, Pao Tai et al. “Air-clad Silicon Pedestal Structures for Broadband Mid-infrared Microphotonics.” Optics Letters 38.7 (2013): 1031. © 2013 Optical Society of America As Published http://dx.doi.org/10.1364/OL.38.001031 Publisher Optical Society of America Version Final published version Citable link http://hdl.handle.net/1721.1/79727 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. April 1, 2013 / Vol. 38, No. 7 / OPTICS LETTERS 1031 Air-clad silicon pedestal structures for broadband mid-infrared microphotonics Pao Tai Lin,* Vivek Singh, Yan Cai, Lionel C. Kimerling, and Anu Agarwal Materials Processing Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA *Corresponding author: [email protected] Received January 9, 2013; revised February 14, 2013; accepted February 15, 2013; posted February 21, 2013 (Doc. ID 183149); published March 20, 2013 Toward mid-infrared (mid-IR) silicon microphotonic circuits, we demonstrate broadband on-chip silicon structures, such as: (i) straight and bent waveguides and (ii) beam splitters, utilizing an air-clad pedestal configuration which eliminates the need for typical mid-IR-lossy oxide cladding. We illustrate a sophisticated fabrication process that can create high-quality pedestal structures in crystalline silicon, while preserving its mid-IR transparency. A fundamental waveguide mode is observed between λ 2.5 μm and λ 3.7 μm, and an optical loss of 2.7 dB∕cm is obtained at λ 3.7 μm.