Effect of Ocean Acidification on Deep Sea Spotted Ratfish Hydrolagus Colliei

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Ocean Acidification on Deep Sea Spotted Ratfish Hydrolagus Colliei Effect of ocean acidification on deep sea spotted ratfish Hydrolagus colliei: physiological consequences on acid-base balance, ion-regulation and nitrogenous waste dynamics Jyotsna Shrivastava (Jo) University of Antwerp Belgium, Europe Overview Introduction Methodology Results Discussion Conclusion The decrease in the pH of earth’s oceans caused by the uptake of CO2 from atmosphere. The pH Scale pH scale is logarithmic meaning a difference of one pH unit is equal to a ten-fold change in acidity. A small change in pH is equal to a LARGE change in acidity. Experimental fish species Taxonomical classification Chondrichthyes (cartilaginous fish) Elasmobranchii Holocephali (primitive fish) Sharks, rays and skates Chimeras Ratfish, Rabbitfish and elephant fish Ratfish are non-elasmobranchs cartilaginous fish Introduction Morphological Characteristic of Ratfish • It is a chimaera found in the north-eastern Pacific Ocean. • It is most common between 200 and 400 m below sea level. • This cartilaginous fish gets its characteristic name from a pointed rat- like tail. • They have a venomous spine located at their dorsal fin which is used in defense. Introduction… Ocean acidification / Hypercapnia (increase in CO2 level) -ambient CO2 levels induce a respiratory acidosis in a number of fish species- Blood pH is compensated by Background • Among Cartilaginous fish, the most extensive studies on acid-base regulation during ocean acidification (hypercapnia) are done in elasmobranch -typically the spotted dogfish (Randall et al., 1976; Heisler et al. 1976). • Dogfish are able to compensate ocean acidification induced acidosis very quickly by - – by extracting HCO3 from the surrounding water – Increasing the rate of H+ excretion and/or + – elevating NH4 excretion Overall, suggesting dogfish and also teleosts are efficiently regulator of acid/base balance during hypercapnic events. Till date, no study has been done in non-elasmobranch cartilaginous fish (e.g. ratfish) Objectives Extracellular Excretion Intracellular Ion- pH rate regulation pH Blood pH H+ RBC Na+ Plasma TCO2 Ammonia - Hepatic cells Cl Osmolality Experimental Site: Bamfield Marine Science Research Centre, Canada Experimental design • Test species: Ratfish • Exposure to 1.5% PCO2 (15,000 ppm) • Exposure period: Pre-exposure (0 h), 4 h, 12h, 24 h and 48 h • At the end of each exposure period fish (n= 6) were sacrificed. • Water samples were taken at each time point (and some intermediate points) at an interval of 4 hrs. -Cannulation!!!!!! the arterial/venous tension is too low Experimental set up Flux box of 20 L (flux vol. 16L) Fish were acclimated overnight in the box. CO2 level was controlled by an automated Loligo CO2 system via CapCTRL software. Results Blood pH 7.6 Hypercapnia 7.5 7.4 7.3 * 7.2 ** ** 7.1 7 6.9 Blood pH 6.8 6.7 6.6 Control 4 h 12 h 24 h 48 h Results Plasma TCO2 11 * 10 ** mmo/L 2 9 ** ** 8 7 Plasma TCO Plasma 6 5 Control 4 h 12 h 24 h 48 h Results Blood pH and Plasma TCO2 7.6 10.5 * 10 7.5 ** 9.5 7.4 ** 9 7.3 8.5 8 /L) 7.2 ** * 7.5 7.1 pH 7 mmol ( 7 ** 6.5 2 6.9 ** 6 5.5 TCO 6.8 pH 5 6.7 TCO2 4.5 6.6 4 Control 4 h 12 h 24 h 48 h Extracellular pH was not restored to control level Results Intracellular pH: RBC 7.20 7.10 7.00 6.90 6.80 6.70 * 6.60 6.50 6.40 pH level pH in RBC 6.30 6.20 6.10 6.00 Control 4 h 12 h 24 h 48 h pH level in RBC was strictly maintained with in control level Results Intracellular pH: Hepatic tissue 7.1 6.9 6.7 6.5 6.3 6.1 5.9 pH level pH in Liver 5.7 5.5 Control 4 h 12 h 24 h 48 h Similar to RBC, pH in liver cells were strictly maintained with in control level Suggesting that intracellular pH was maintained quite well (contrast to extracellular pH) Results Ammonia excretion rate -4 -0 h 0 -4 h 4-8 h 8-12 h 20-24 h 32-36 h 44- 48 h 0 -25 -50 -75 -100 (µmol/kg/hr) -125 amm -150 J -175 Control -200 HC -225 Ammonia excretion rate did not contribute to reduce extracellular acidosis Results + H excretion rate 400 Control 200 HC 0 -200 -400 ** * -600 Flux Rate µmol/Kg/Hr -800 + * H -1000 -1200 -4 -0 h 0 -4 h 4-8 h 8-12 h 20-24 h 32-36 h 44- 48 h A slight (and temporary) increment was revealed Results Na+ level 480 460 440 420 400 380 content (mM) 360 + Na 340 320 300 Control 4 h 12 h 24 h 48 h Results Osmolality 1100 1050 1000 950 900 850 Osmolality Osmolality (mOsm/kg) 800 750 Control 4 h 12 h 24 h 48 h Similar to Na+ concentration, osmolality remained unchanged Discussion Extracellular pH (blood pH) was not compensated -Level remained below control level - Fish seems to suffer acidosis in extracellular fluid. Intracellular pH (RBC and liver cell) was regulated efficiently -suggesting that ratfish prioritize intracellular pH over extracellular pH Ratfish does not seem to utilize ammonia excretion pathway to cope with acidosis. Plasma sodium concentration (and H+ excretion) remains constant throughout the experiment -does not favor the Na+/H+ exchange as the operative mechanism in ratfish Conclusion Ratfish seems to be a poor acid-base regulator during ocean acidification (hypercapnia). • Net bicarbonate uptake from the environment might be the compensation of the intracellular acidosis. - - • Additional bicarbonate is gained by active HCO3 /C1 ion exchange. Thanks to Prof. Gudrun De Boeck, Prof. Ronny Blust and others……… Prof. G. Goss Alex Amit Alyssa .
Recommended publications
  • Shark Cartilage, Cancer and the Growing Threat of Pseudoscience
    [CANCER RESEARCH 64, 8485–8491, December 1, 2004] Review Shark Cartilage, Cancer and the Growing Threat of Pseudoscience Gary K. Ostrander,1 Keith C. Cheng,2 Jeffrey C. Wolf,3 and Marilyn J. Wolfe3 1Department of Biology and Department of Comparative Medicine, Johns Hopkins University, Baltimore, Maryland; 2Jake Gittlen Cancer Research Institute, Penn State College of Medicine, Hershey, Pennsylvania; and 3Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, Virginia Abstract primary justification for using crude shark cartilage extracts to treat cancer is based on the misconception that sharks do not, or infre- The promotion of crude shark cartilage extracts as a cure for cancer quently, develop cancer. Other justifications represent overextensions has contributed to at least two significant negative outcomes: a dramatic of experimental observations: concentrated extracts of cartilage can decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key inhibit tumor vessel formation and tumor invasions (e.g., refs. 2–5). justification for its use. Herein, both malignant and benign neoplasms of No available data or arguments support the medicinal use of crude sharks and their relatives are described, including previously unreported shark extracts to treat cancer (6). cases from the Registry of Tumors in Lower Animals, and two sharks with The claims that sharks do not, or rarely, get cancer was originally two cancers each. Additional justifications for using shark cartilage are argued by I. William Lane in a book entitled “Sharks Don’t Get illogical extensions of the finding of antiangiogenic and anti-invasive Cancer” in 1992 (7), publicized in “60 Minutes” television segments substances in cartilage.
    [Show full text]
  • Causes of Mortality in a Harbor Seal Population at Equilibrium
    fmars-07-00319 May 11, 2020 Time: 19:31 # 1 ORIGINAL RESEARCH published: 13 May 2020 doi: 10.3389/fmars.2020.00319 Causes of Mortality in a Harbor Seal (Phoca vitulina) Population at Equilibrium Elizabeth A. Ashley1, Jennifer K. Olson2, Tessa E. Adler3, Stephen Raverty4, Eric M. Anderson5,3, Steven Jeffries6 and Joseph K. Gaydos1* 1 The SeaDoc Society, UC Davis School of Veterinary Medicine, Karen C. Drayer Wildlife Health Center, Eastsound, WA, United States, 2 The Whale Museum, Friday Harbor, WA, United States, 3 Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States, 4 Animal Health Centre, British Columbia Ministry of Agriculture, Abbotsford, BC, Canada, 5 Ecological Restoration Program, British Columbia Institute of Technology, Burnaby, BC, Canada, 6 Marine Mammal Investigations, Washington Department of Fish and Wildlife, Tacoma, WA, United States The harbor seal (Phoca vitulina richardii) population in the Salish Sea has been at equilibrium since the mid-1990s. This stable population of marine mammals resides relatively close to shore near a large human population and offers a novel opportunity to evaluate whether disease acts in a density-dependent manner to limit population growth. We conducted a retrospective analysis of harbor seal stranding and necropsy findings in the San Juan Islands sub-population to assess age-related stranding trends Edited by: Alastair Martin Mitri Baylis, and causes of mortality. Between January 01, 2002 and December 31, 2018, we South Atlantic Environmental detected 882 harbor seals that stranded and died in San Juan County and conducted Research Institute, Falkland Islands necropsies on 244 of these animals to determine primary and contributing causes Reviewed by: of death.
    [Show full text]
  • 03 07049 Sharks.Qxd:CFN 122(2) 11/4/09 10:08 AM Page 124
    03_07049_sharks.qxd:CFN 122(2) 11/4/09 10:08 AM Page 124 Abundance Trends for Hexanchus griseus, Bluntnose Sixgill Shark, and Hydrolagus colliei, Spotted Ratfish, Counted at an Automated Underwater Observation Station in the Strait of Georgia, British Columbia ROBERT DUNBRACK Biology Department, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 3X9 Canada; e- mail: dunbrack@ mun.ca Dunbrack, Robert. 2008. Abundance trends for Hexanchus griseus, Bluntnose Sixgill Shark, and Hydrolagus colliei, Spotted Ratfish, counted at an automated underwater observation station in the Strait of Georgia, British Columbia. Canadian Field-Naturalist 122(2): 124-128. Recordings from a time lapse video monitoring station on a shallow rocky reef in the Strait of Georgia, British Columbia, revealed a steep and continuous decline in the occurrence of Hexanchus griseus (Bluntnose Sixgill Shark) between 2001 and 2007, with relative abundance in 2006 and 2007 less than 1% of that in 2001. The relative abundance of another chondrichthyan, Hydrolagus colliei (Spotted Ratfish), decreased to 15% of 2004 levels in 2005 and 2006 and remained below 25% in 2007. There is no compelling explanation for these decreases. Over the past 25 years water temperatures have increased in the Strait of Georgia and there have been a number of El Niño warm water events, but diver observations of H. griseus at this site over the same time period give no indication of prior changes in abundance. Neither species is targeted by a fishery, but injuries, possibly related to hooking and entanglement, observed in 28% of individually identified H. griseus suggests this species may be taken locally as bycatch.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Biomechanics of Locomotion in Sharks, Rays, and Chimaeras
    5 Biomechanics of Locomotion in Sharks, Rays, and Chimaeras Anabela M.R. Maia, Cheryl A.D. Wilga, and George V. Lauder CONTENTS 5.1 Introduction 125 5.1.1 Approaches to Studying Locomotion in Chondrichthyans 125 5.1.2 Diversity of Locomotory Modes in Chondrichthyans 127 5.1.3 Body Form and Fin Shapes 127 5.2 Locomotion in Sharks 128 5.2.1 Function of the Body during Steady Locomotion and Vertical Maneuvering 128 5.2.2 Function of the Caudal Fin during Steady Locomotion and Vertical Maneuvering 130 5.2.3 Function of the Pectoral Fins during Locomotion 134 5.2.3.1 Anatomy of the Pectoral Fins 134 5.2.3.2 Role of the Pectoral Fins during Steady Swimming 136 5.2.3.3 Role of the Pectoral Fins during Vertical Maneuvering 138 5.2.3.4 Function of the Pectoral Fins during Benthic Station-Holding 139 5.2.3.5 Motor Activity in the Pectoral Fins 139 5.2.4 Routine Maneuvers and Escape Responses 140 5.2.5 Synthesis 141 5.3 Locomotion in Skates and Rays 142 5.4 Locomotion in Holocephalans 145 5.5 Material Properties of Chondrichthyan Locomotor Structures 146 5.6 Future Directions 147 Acknowledgments 148 References 148 5.1.1 Approaches to Studying 5.1 Introduction Locomotion in Chondrichthyans The body form of sharks is notable for the distinctive Historically, many attempts have been made to under- heterocercal tail with external morphological asymme- stand the function of the median and paired fins in try present in most taxa and the ventrolateral winglike sharks and rays, and these studies have included work pectoral fins extending laterally from the body (Figure with models (Affleck.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • Diet Analysis of Pacific Harbour Seals (Phoca Vitulina Richardsi)
    DIET ANALYSIS OF PACIFIC HARBOUR SEALS (PHOCA VITULINA RICHARDSI) USING HIGH-THROUGHPUT DNA SEQUENCING by Austen Clouse Thomas B.Sc., Western Washington University, 2004 M.Sc., Western Washington University, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) September 2015 © Austen Clouse Thomas, 2015 Abstract Harbour seals have long been perceived to compete with fisheries for economically valuable fish resources in the Pacific Northwest, but assessing the amounts of fish consumed by seals requires estimates of harbour seal diets. Unfortunately, traditional diet analysis techniques cannot provide the necessary information to estimate the species, life stage, and biomass of key prey (e.g. salmonids) consumed by seals. I therefore developed a new harbour seal diet analysis methodology, using scat DNA metabarcoding and prey hard-part analysis to create refined estimates of salmon in harbour seal diet. I also sought to understand the quantitative potential of DNA metabarcoding diet analysis (i.e. the relationship between prey biomass proportions and DNA sequence percentages produced by high-throughput amplicon sequencing of seal scat DNA). Analysis of faecal samples (scats) from captive harbour seals fed a constant diet indicated that a wide range of factors influence the numbers of prey sequences resulting from scat amplicon sequencing. These biases ranged from preferential amplification of certain prey species DNA, to sequence quality filtering—in addition to interactions between the various biases. I was able to apply correction factors derived from tissue mixtures of the species fed to captive seals that improved prey biomass estimates from DNA, and found that the lipid content of prey fish species perfectly predicted the magnitude of bias resulting from differential prey digestion.
    [Show full text]
  • The Conservation Status of North American, Central American, and Caribbean Chondrichthyans the Conservation Status Of
    The Conservation Status of North American, Central American, and Caribbean Chondrichthyans The Conservation Status of Edited by The Conservation Status of North American, Central and Caribbean Chondrichthyans North American, Central American, Peter M. Kyne, John K. Carlson, David A. Ebert, Sonja V. Fordham, Joseph J. Bizzarro, Rachel T. Graham, David W. Kulka, Emily E. Tewes, Lucy R. Harrison and Nicholas K. Dulvy L.R. Harrison and N.K. Dulvy E.E. Tewes, Kulka, D.W. Graham, R.T. Bizzarro, J.J. Fordham, Ebert, S.V. Carlson, D.A. J.K. Kyne, P.M. Edited by and Caribbean Chondrichthyans Executive Summary This report from the IUCN Shark Specialist Group includes the first compilation of conservation status assessments for the 282 chondrichthyan species (sharks, rays, and chimaeras) recorded from North American, Central American, and Caribbean waters. The status and needs of those species assessed against the IUCN Red List of Threatened Species criteria as threatened (Critically Endangered, Endangered, and Vulnerable) are highlighted. An overview of regional issues and a discussion of current and future management measures are also presented. A primary aim of the report is to inform the development of chondrichthyan research, conservation, and management priorities for the North American, Central American, and Caribbean region. Results show that 13.5% of chondrichthyans occurring in the region qualify for one of the three threatened categories. These species face an extremely high risk of extinction in the wild (Critically Endangered; 1.4%), a very high risk of extinction in the wild (Endangered; 1.8%), or a high risk of extinction in the wild (Vulnerable; 10.3%).
    [Show full text]
  • Hydrolagus Colliei) In
    Distribution and Habitat Associations of Spotted Ratfish (Hydrolagus colliei) in the Monterey Bay National Marine Sanctuary A Capstone Project Presented to the Faculty of Science and Environmental Policy in the College of Science, Media Arts, and Technology at California State University, Monterey Bay in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science by Heather Kramp May 9, 2012 Kramp 1 Abstract Improved knowledge of how fish associate with seafloor habitat features is imperative for understanding how species are distributed and for the proper implementation of successful management strategies. The spotted ratfish (Hydrolagus colliei), is a deep water species of the Chimaeridae family occurring along the west coast of the United States. The abundance of spotted ratfish and their importance as both a predator and prey species implies they play an important role in deep sea marine ecosystems. However, little knowledge on the life history, distribution, and habitat associations spotted ratfish presents a significant management challenge for mitigating bycatch of the species. Videographic imagery collected within the Monterey Bay National Marine Sanctuary (MBNMS) between 2006 and 2010 using an ROV and towed camera sled provided the opportunity to explore the habitat associations of spotted ratfish. The precise locations of 149 individuals were plotted across four major study areas, including northern Monterey Bay, Point Lobos, Point Sur, and La Cruz Canyon. A habitat selectivity index was calculated to determine positive and negative associations with available habitat types. Spotted ratfish were primarily associated with mud substrates as well as some boulder and ridge habitats. Habitats including cobble and brachiopod beds showed a negative association.
    [Show full text]
  • AN OVERVIEW of MAJOR SHARK TRADERS CATCHERS and SPECIES Nicola Okes Glenn Sant TRAFFIC REPORT an Overview of Major Global Shark* Traders, Catchers and Species
    SEPTEMBER 2019 AN OVERVIEW OF MAJOR SHARK TRADERS CATCHERS AND SPECIES Nicola Okes Glenn Sant TRAFFIC REPORT An overview of major global shark* traders, catchers and species TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. Reprod uction of material appearing in this report requires written permission from the publisher. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the authors or their supporting organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Published by: TRAFFIC International, Cambridge, United Kingdom. ISBN: 978-1-911646-14-3 Suggested citation: Okes, N. and Sant, G. (2019). An overview of major shark traders, catchers and species. TRAFFIC, Cambridge, UK. © TRAFFIC 2019. Copyright of material published in this report is vested in TRAFFIC. UK Registered Charity No. 1076722 Design by Marcus Cornthwaite * Throughout this report, unless otherwise specified, the term “sharks” refers to all species of sharks, skates, rays and chimaeras (Class Chondrichthyes). CONTENTS 1 Introduction 1 2 Catch data 2 Trade data 8 3 Overview 9 Meat 9 Fins 11 CITES-listed species 16 4 Risk of overexploitation 21 Conclusions and recommendations 22 5 References 24 Annex I 26 Image credits 32 ACKNOWLEDGEMENTS The preparation, development and production of this publication was made possible with funding from a number of sources including the German Federal Agency for Nature Conservation (Bundesamt für Naturschutz, BfN).
    [Show full text]
  • LIFE HISTORY, ABUNDANCE, and DISTRIBUTION of the SPOTTED RATFISH, Hydrolagus Colliei
    LIFE HISTORY, ABUNDANCE, AND DISTRIBUTION OF THE SPOTTED RATFISH, Hydrolagus colliei A Thesis Presented to The Faculty of Moss Landing Marine Laboratories And the Institute of Earth Systems Science and Policy California State University, Monterey Bay In Partial Fulfillment Of the Requirements for the Degree Master of Science In Marine Science By Lewis Abraham Kamuela Barnett June 2008 i © 2008 Lewis Abraham Kamuela Barnett ALL RIGHTS RESERVED ii APPROVED FOR THE DEPARTMENT OF MARINE SCIENCE ________________________________________________ Dr. Gregor M. Cailliet, Advisor Moss Landing Marine Laboratories ________________________________________________ Dr. David A. Ebert Moss Landing Marine Laboratories Pacific Shark Research Center ________________________________________________ Dr. James T. Harvey Moss Landing Marine Laboratories ________________________________________________ Dr. Enric Cortés NOAA Fisheries, Southeast Fisheries Science Center APPROVED FOR THE UNIVERSITY ________________________________________________ iii LIFE HISTORY, ABUNDANCE, AND DISTRIBUTION OF THE SPOTTED RATFISH, Hydrolagus colliei Lewis Abraham Kamuela Barnett California State University, Monterey Bay 2008 Size at maturity, fecundity, reproductive periodicity, distribution, and abundance were estimated for the spotted ratfish, Hydrolagus colliei, off the coast of California, Oregon, and Washington (USA). Skeletal muscle concentrations of the steroid hormones testosterone (T) and estradiol (E2) predicted similar, but slightly smaller sizes at maturity than morphological
    [Show full text]
  • Buy This Book
    Excerpted from buy this book © by the Regents of the University of California. Not to be reproduced without publisher’s written permission. INTRODUCTION don’t realize how colorful many of these species are. Geographi- cally the guide reaches from the innermost shallow bays and es- tuaries to 500 miles offshore. The introductory sections on chondrichthyan biology, ecol- ogy, and diversity are intended only as a brief overview, as other contemporary authors have treated these subjects in more detail. The guide is primarily intended to be useful in the field, where users can simply match the illustration to the specimen or work through the identification keys to each species. Once a tentative identification has been made, the reader can turn to the species description and natural history notes. California’s Marine Environment The California coastline (map 1), which extends over 1,100 miles in a north–south direction from the Mexican border (32 degrees N latitude) to the Oregon border (42 degrees N latitude), is com- posed of three major geographic regions: northern California (the Oregon border to San Francisco), central California (San Francisco to Point Conception), and southern California (Point Conception to the Mexican border). The general flora and fauna shift from warm-temperate water species in the south to cold- temperate water species in the north, whereas the transition of the elasmobranch fauna seems to occur in the central California region, where warm-temperate water species give way to cool- temperate nearshore species. Species such as the Pacific Sleeper Shark, some skates, and the White-spotted Ratfish, which occur in deep water in southern California, occur in relatively shal- lower water in the northern part of the state.
    [Show full text]