Food Selection by Northern Yellow-Cheeked Crested Gibbons (Nomascus Annamensis)In Northern Cambodia

Total Page:16

File Type:pdf, Size:1020Kb

Food Selection by Northern Yellow-Cheeked Crested Gibbons (Nomascus Annamensis)In Northern Cambodia Food Selection by Northern Yellow-cheeked Crested Gibbons (Nomascus annamensis)in Northern Cambodia Naven Hon A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity School of Biological Sciences Victoria University of Wellington New Zealand 2016 i Abstract Tropical regions have extremely high plant diversity, which in turn supports a high diversity of animals. However, not all plant species are selected by animals as food sources, with some herbivores selecting only specific plants as food as not all plants have the same nutrient make up. Animals must select which food items to include in their diets, as the amount and type of nutrients in their diet can affect lifespan, health, fitness, and reproduction. Gibbon populations have declined significantly in recent years due to habitat destruction and hunting. Northern yellow-cheeked crested gibbon (Nomascus annamensis) is a newly described species, and has a limited distribution restricted to Cambodia, Laos and Vietnam. The northern yellow-cheeked crested gibbons play an important role in seed dispersal, yet little is currently known about this species, including its food selection and nutritional needs. However, data on food selection and nutritional composition of selected food items would greatly inform the conservation of both wild and captive populations of this species. This study aims to quantify food selection by the northern yellow-cheeked crested gibbons by investigating the main plant species consumed and the influence of the availability of food items on their selection. The study also explores the nutritional composition of food items consumed by this gibbon species and identifying key plant species that provide these significant nutrients. A habituated group of the northern yellow-cheeked crested gibbons with five members located in northern Cambodia was studied for 12 weeks during the dry season, and focal animal sampling was used to observe individual feeding behaviours. Four main activity categories were recorded including resting, feeding, travelling and socializing. Phenological data was recorded from transect lines, and plant densities from 20 vegetation plots inside the home range of this group of gibbons were also measured. Seventy-four plant samples from 20 tree and liana species that were consumed by this group of gibbons were collected for nutritional analyses. These samples were initially dried in sunlight, and then oven dried before levels of protein, total non-structural carbohydrates, lipids, fibres and condensed tannins were measured at the Nutritional Ecology Lab at Hunter College of the City University of New York, New York. i The northern yellow-cheeked crested gibbon individuals spent most of the time resting, followed by feeding, travelling and socializing. Their main diet was fruit, supplemented with young leaves, flowers, mature leaves, and occasionally insects. Individuals selected food from 37 plant species, but predominately fed on just 16 of these species. The three most-consumed species were fruit from Ilex umbellulata (tree), Ficus. sp (liana), and young leaves from Lithocarpus elegans (tree). There was a significant relationship between feeding time and the availability of flowers, indicating that flowers were actively selected for when present. However, there was no significant relationship between feeding time and the availability of fruit or young leaves. Only a small number of plants bore fruit, with very low densities in the home range of this gibbon study group, but these plants produced a large abundance of fruit. These findings clearly indicate that fruit is the main diet for northern yellow-cheeked crested gibbons in the dry season, with young leaves, flowers, mature leaves and insects acting as secondary food sources. The northern yellow-cheeked crested gibbons selected only a small number of specific plants in their territory for food sources, indicating that any selective logging targeting these plant species would reduce food availability, and restrict the diet of these animals. Fruits consumed by the northern yellow-cheeked crested gibbons were rich in carbohydrates and lipids, while young leaves were richest concentration of protein. Mature leaves had a high moisture content, whereas flowers contained condensed tannins more often than other plant tissues. All plant tissues consumed had similar amount of fibres. Generally, the food items consumed had higher concentrations of carbohydrate than protein or lipids. The overall diet of this group of gibbons was low in lipids. These results indicate that northern yellow-cheeked crested gibbon consumed food items with high concentrations of carbohydrate, and only selected a few food sources with high level of protein. Overall, these findings have contributed important knowledge that can be used for long-term conservation of this gibbon species. There are a small number of key food species in the home range which need special protection. The northern yellow-cheeked crested gibbons consumed food items from different plant species, and as a consequence, all plant species selected play an important role for nutritional requirements by this gibbon species. When considering feeding requirement by the northern yellow-cheeked crested gibbons for captive breeding programs, diets should include fruit, which is rich in carbohydrates, and young leaves, which have high levels of protein. ii Acknowledgements Firstly, I would like to thank New Zealand ASEAN Scholarship Program, and the New Zealand government through the New Zealand Aid Program for a three-year scholarship to study at Victoria University of Wellington (VUW), New Zealand. This has been a great opportunity to upgrade my knowledge in science and in particularly biodiversity research and conservation. I also would like to thank the Primate Conservation Incorporated (PCI) and Primate Action Fund (PAF) with Conservation International (CI) for supporting this project. Without the support of these agencies, I would not have chance to become involved in primate research and conservation. This thesis would not have been possible without the encouragement and support of my supervisors, Associate Professor Dr Ken Ryan (VUW) and Dr Alison Behie (Australian National University, Canberra, Australia). I highly appreciate what both of you have contributed to this thesis. Without both of you, I would not have had the chance to conduct the field work and laboratory analysis for this thesis. Ken, thank you very much for accepting me as your student. Your suggestion and reviews as well as the detail of your corrections of this thesis were always highly appreciated, and all of these have contributed to the quality of this thesis. Alison, I have no words to say besides thank you very much for your help during my study in New Zealand. Without your help, I might not have completed this Master’s degree smoothly in a country where the education system is so different from my own. More importantly, thank you very much for agreeing to be my supervisor, and for guiding me in this research. Although you are very busy with your lovely daughters and family, you always spent your time reviewing this thesis from the beginning until it was ready for submitting. I also thank Sonja Hampel and Dr Lisa Woods for their guidance in checking grammatical errors and statistical analyses through this thesis. I also extend my thanks to Assistant Professor Dr Jessica Rothman (Hunter College of the City University of New York) who allowed me to do plant nutritional analyses in her lab in New York, and helped to analyse the rest of my plant samples. I also thank Jenny Paltan, Ketti Barateli, Caley Johnson, Santiago Cassalett and all the people who helped me during iii the time I was working in the lab. I especially thank Ishmael Deen who drove and guided me around New York City. I also would like to thank Dr Ben Rawson and Dr Jackson Frechette for their expertise and guidance during and after my data collection. This research would not have been possible in the field without the contribution of my local assistants: Mr. Noy, Mr. Vath, Mr. Soulit, Mr. Sie and the local people from I-tube village. I thank Mr. Hieng and Mr .Poy for their help in data collection, climbing trees and lianas to get plant samples. Some local assistants rose early in the morning (4:00 am) with me and walked to the gibbon site (site A). Thanks again to Mr. Vath who was not only a local assistant, but also was the village volunteer doctor who helped me when I contracted malaria, and made sure I was taken to the hospital on time. The project would not have been completed without the collaboration of the Forestry Administration (FA), Ministry of Agriculture, Forestry and Fisheries of the Royal Government of Cambodia, and their permission to conduct the study and export plant samples to the United States of America. In particular, I would like to thank Mr. Vong Sokserey and Mr. Pov Samanak for coordinating these permission letters. I also thank CI, in particular Mr. Seng Bunra, Mr. Cheap Chanthon, and everyone at the Veun-Sai Siem Pang Conservation Area (VSSPCA) including Mr. Nget, Mr. Pheak, Mr. Earn, Mr. Puthy, and Mr. Pisey for your care and time in protection the forests as well as the gibbons at the study site. Lastly, I would like to thank my lovely parents and my wife, Lim Sotheary, for their love, care, and patience during the time I was studying in New Zealand. Your encouragement is an effective medicine that also encourage me to finish this study. I also thank my sisters and brothers, relatives and friends for your support and encouragement while I was away from home, and those friends who live and study in New Zealand. I also thank Wellington Khmer Association who always invited me during Khmer New Year and many special occasions, your warm welcome had reduced what we called “homesickness”.
Recommended publications
  • Gibbon Journal Nr
    Gibbon Journal Nr. 5 – May 2009 Gibbon Conservation Alliance ii Gibbon Journal Nr. 5 – 2009 Impressum Gibbon Journal 5, May 2009 ISSN 1661-707X Publisher: Gibbon Conservation Alliance, Zürich, Switzerland http://www.gibbonconservation.org Editor: Thomas Geissmann, Anthropological Institute, University Zürich-Irchel, Universitätstrasse 190, CH–8057 Zürich, Switzerland. E-mail: [email protected] Editorial Assistants: Natasha Arora and Andrea von Allmen Cover legend Western hoolock gibbon (Hoolock hoolock), adult female, Yangon Zoo, Myanmar, 22 Nov. 2008. Photo: Thomas Geissmann. – Westlicher Hulock (Hoolock hoolock), erwachsenes Weibchen, Yangon Zoo, Myanmar, 22. Nov. 2008. Foto: Thomas Geissmann. ©2009 Gibbon Conservation Alliance, Switzerland, www.gibbonconservation.org Gibbon Journal Nr. 5 – 2009 iii GCA Contents / Inhalt Impressum......................................................................................................................................................................... i Instructions for authors................................................................................................................................................... iv Gabriella’s gibbon Simon M. Cutting .................................................................................................................................................1 Hoolock gibbon and biodiversity survey and training in southern Rakhine Yoma, Myanmar Thomas Geissmann, Mark Grindley, Frank Momberg, Ngwe Lwin, and Saw Moses .....................................4
    [Show full text]
  • 10 Sota3 Chapter 7 REV11
    200 Until recently, quantifying rates of tropical forest destruction was challenging and laborious. © Jabruson 2017 (www.jabruson.photoshelter.com) forest quantifying rates of tropical Until recently, Photo: State of the Apes Infrastructure Development and Ape Conservation 201 CHAPTER 7 Mapping Change in Ape Habitats: Forest Status, Loss, Protection and Future Risk Introduction This chapter examines the status of forested habitats used by apes, charismatic species that are almost exclusively forest-dependent. With one exception, the eastern hoolock, all ape species and their subspecies are classi- fied as endangered or critically endangered by the International Union for Conservation of Nature (IUCN) (IUCN, 2016c). Since apes require access to forested or wooded land- scapes, habitat loss represents a major cause of population decline, as does hunting in these settings (Geissmann, 2007; Hickey et al., 2013; Plumptre et al., 2016b; Stokes et al., 2010; Wich et al., 2008). Until recently, quantifying rates of trop- ical forest destruction was challenging and laborious, requiring advanced technical Chapter 7 Status of Apes 202 skills and the analysis of hundreds of satel- for all ape subspecies (Geissmann, 2007; lite images at a time (Gaveau, Wandono Tranquilli et al., 2012; Wich et al., 2008). and Setiabudi, 2007; LaPorte et al., 2007). In addition, the chapter projects future A new platform, Global Forest Watch habitat loss rates for each subspecies and (GFW), has revolutionized the use of satel- uses these results as one measure of threat lite imagery, enabling the first in-depth to their long-term survival. GFW’s new analysis of changes in forest availability in online forest monitoring and alert system, the ranges of 22 great ape and gibbon spe- entitled Global Land Analysis and Dis- cies, totaling 38 subspecies (GFW, 2014; covery (GLAD) alerts, combines cutting- Hansen et al., 2013; IUCN, 2016c; Max Planck edge algorithms, satellite technology and Insti tute, n.d.-b).
    [Show full text]
  • Anti-Allergic and Anti-Inflammatory Compounds from Aglaia Andamanica Leaves
    Songklanakarin J. Sci. Technol. 37 (1), 37-41, Jan. - Feb. 2015 http://www.sjst.psu.ac.th Original Article Anti-allergic and anti-inflammatory compounds from Aglaia andamanica leaves Jindaporn Puripattanavong1 and Supinya Tewtrakul1,2* 1 Department of Pharmacognosy and Pharmaceutical Botany, 2 Excellent Research Laboratory, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla Univesity, Hat Yai, Songkhla, 90112 Thailand. Received: 4 July 2014; Accepted: 12 November 2014 Abstract The leaves from Aglaia andamanica were determined for their anti-allergic and anti-inflammatory effects using RBL- 2H3 and RAW264.7 cells, respectively. Among the isolated compounds, 24-epi-piscidinol A (5) exhibited the highest anti- allergic activity against -hexosaminidase release with an IC50 value of 19.8 M, followed by (-)-yangambin (3, IC50 = 33.8 M), pyramidaglain A (8, IC50 = 37.1 M), pachypodol (2, IC50 = 38.3 M) and pyramidaglain B (9, IC50 = 44.8 M), respec- tively; whereas other compounds possessed moderate to mild effects (IC50 = 67.5->100 M). For anti-inflammatory activity, 24-epi-piscidinol A (5) possessed potent activity with an IC50 value of 24.0 M, followed by pyramidaglain B (9, IC50 = 25.6 M), pachypodol (2, IC50 = 34.5 M) and (-)-yangambin (3, IC50 = 37.4 M), respectively; whereas other compounds exhibited moderate to mild activities (IC50 = 54.2->100 M). These active compounds could be developed as anti-allergic and anti-inflammatory agents in the future. Keywords: RBL-2H3 cells, RAW264.7 cells, Aglaia andamanica, Meliaceae 1. Introduction an allergic reaction, is an IgE-mediated immune response, resulting in histamine secretion from mast cells and blood Aglaia andamanica is a plant belonging to the basophils.
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • Sound Spectrum Characteristics of Eastern Black Crested Gibbons
    NORTH-WESTERN JOURNAL OF ZOOLOGY 13 (2): 347-351 ©NwjZ, Oradea, Romania, 2017 Article No.: e161705 http://biozoojournals.ro/nwjz/index.html Sound spectrum characteristics of Eastern Black Crested Gibbons Huaiqing DENG#, Huamei WEN# and Jiang ZHOU* School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, 550001, China, E-mail: [email protected] # These authors contributed to the work equally and regarded as Co-first authors. * Corresponding author, J. Zhou, E-mail: [email protected], Tel.:13985463226 Received: 01. November 2016 / Accepted: 07. September 2016 / Available online: 19. September 2016 / Printed: December 2017 Abstract. Studies about the sound spectrum characteristics and the intergroup differences in eastern black crested gibbon (Nomascus nasutus) song are still rare. Here, we studied the singing behavior of eastern black crested gibbon based on song samples of three groups of gibbons collected from Trung Khanh, northern Vietnam. The results show that: 1) Song frequency of both adult male and adult female eastern black crested gibbon is low and both are below 2 KHz; 2) Songs of adult male eastern black gibbons are composed mainly of short syllables (aa notes) and frequency modulated syllables (FM notes), while adult female gibbons only produce a stable and stereotyped pattern of great calls; 3) There is significant differences among the three groups in highest and lowest frequency of FM syllable in males’ song; 4) The song chorus is dominated by adult males, while females add a great call; 5) The sound spectrum frequency is lower and complex, which is different from Hainan gibbon. The low frequency in the singing of the eastern black crested gibbon is related to the structure and low quality of the vegetation of its habitat.
    [Show full text]
  • Taxanomic Composition and Conservation Status of Plants in Imbak Canyon, Sabah, Malaysia
    Journal of Tropical Biology and Conservation 16: 79–100, 2019 ISSN 1823-3902 E-ISSN 2550-1909 Short Notes Taxanomic Composition and Conservation Status of Plants in Imbak Canyon, Sabah, Malaysia Elizabeth Pesiu1*, Reuben Nilus2, John Sugau2, Mohd. Aminur Faiz Suis2, Petrus Butin2, Postar Miun2, Lawrence Tingkoi2, Jabanus Miun2, Markus Gubilil2, Hardy Mangkawasa3, Richard Majapun2, Mohd Tajuddin Abdullah1,4 1Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu 2Forest Research Centre, Sabah Forestry Department, Sandakan, Sabah, Malaysia 3 Maliau Basin Conservation Area, Yayasan Sabah 4Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu *Corresponding authors: [email protected] Abstract A study of plant diversity and their conservation status was conducted in Batu Timbang, Imbak Canyon Conservation Area (ICCA), Sabah. The study aimed to document plant diversity and to identify interesting, endemic, rare and threatened plant species which were considered high conservation value species. A total of 413 species from 82 families were recorded from the study area of which 93 taxa were endemic to Borneo, including 10 endemic to Sabah. These high conservation value species are key conservation targets for any forested area such as ICCA. Proper knowledge of plant diversity and their conservation status is vital for the formulation of a forest management plan for the Batu Timbang area. Keywords: Vascular plant, floral diversity, endemic, endangered, Borneo Introduction The earth as it is today has a lot of important yet beneficial natural resources such as tropical forests. Tropical forests are one of the world’s richest ecosystems, providing a wide range of important natural resources comprising vital biotic and abiotic components (Darus, 1982).
    [Show full text]
  • New Cytotoxic Pregnane-Type Steroid from the Stem Bark of Aglaia Elliptica (Meliaceae)
    ORIGINAL ARTICLE Rec. Nat. Prod. 12:2 (2018) 121-127 New Cytotoxic Pregnane-type Steroid from the Stem Bark of Aglaia elliptica (Meliaceae) Kindi Farabi 1, Desi Harneti 1, Nurlelasari 1, Rani Maharani 1, Ace Tatang Hidayat 1,2, Khalijah Awang 3, Unang Supratman 1,2,* and Yoshihito Shiono 4 1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, Indonesia 2Central Laboratory of Universitas Padjadjaran, Jatinangor 45363, Sumdeang, Indonesia 3Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 59100, Malaysia 4Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan (Received July 5, 2017; Revised September 13, 2017; Accepted September 13, 2017) Abstract: A new pregnane-type steroid, 2α-hydroxy-3α-methoxy-5α-pregnane (1), together with three known dammarane-type triterpenoid, 3β-acetyl-20S,24S-epoxy-25-hydroxydammarane (2), 20S,24S-epoxy-3α,25- dihydroxydammarane (3), and eichlerianic acid (4) have been isolated from the stem bark of Aglaia elliptica. The structures were determined by spectroscopic methods including the 2D-NMR techniques. Compound 1-4 showed moderate cytotoxic activity against P-388 murine leukemia cells. Keywords: Pregnane-type steroid; Aglaia elliptica; cytotoxic activity; Meliaceae. © 2018 ACG Publications. All rights reserved. 1. Introduction Aglaia is the largest genus belong to Meliaceae family contain about 150 species, and more than 65 species of them were grown in Indonesia [1,2]. Recently, Aglaia genus used traditionally for treatment some desease. In Thailand, A. odorata used for the treatment of traumatic injury, bruises, febrifuge, heart disease and toxin by causing vomiting [3] and the bark of A.
    [Show full text]
  • Import and Export) (\ Vild Life) Regulations, 1998 I I •
    StatmorJ Tnstru.:nenl 76 of 1998. [CAP. 20:14 Parks and W ild Life (Import and Export) (\ Vild Life) Regulations, 1998 I I • ARRANGENIENT OF SECTIONS Sectioll ( l. Title. 2. Interpretation. 3. Control of import and export of wild life and trophies. 4. Open general pennits. 5. Permits and certificaces. 6. Fonn of permits, certificates. et cetera. 7. Period of validity of export permits. 8. Permits nor to be transferred. 9. A1nendn1ents and revocc:1 tion of perm.i ~s and certificates . .,n _!,.., Delegation of povvers by Dirtctor ind Directer of Custom~. 11. IPspect8rs. 12. Furnishing of information. 13. P0·,vers of insptctors anJ iepn::-ientative:; of rv1i.11iSt~r . 14. ,l -'.' Offences and pcn,1ltie~. lf 17. Repeals arid ~- Jvings. .«. Contrvlied ·~oo(:s.- I • Sc:co.\n ScHEuULE: \Vilct life. T HIRD ScHEDl·LE: Repeais. Parks and Wild Life (ln1porL and Expon) (Wild Life) Regulations, 1998 .. IT is hereby notified that the Minister of Mines, Environment and Tourism has, in terms of section 129 of the Parks and Wild Life Act [ Chapter 20: 14], made the following regulations:- Tit/e 1. These regulations may be cited as the Parks and Wild Life (Import and Expott) (Wi]d Life) Regulations, 1998. ( Interpretation 2. (l) In these regulations, and in any open general permii:­ "artificially propagated" , means plants grown from seeds, cuttings, tissues, spores or other new propagates under control led conditions; "bred in captivity" means the offspring, including eggs pro­ duced in a controlled environm.ent, either from parents · that n1ated or from
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for Lyme Disease (Chronic)
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Plants for Lyme Disease (Chronic) Plant Chemical Count Activity Count Garcinia xanthochymus 1 1 Nicotiana rustica 1 1 Acacia modesta 1 1 Galanthus nivalis 1 1 Dryopteris marginalis 2 1 Premna integrifolia 1 1 Senecio alpinus 1 1 Cephalotaxus harringtonii 1 1 Comptonia peregrina 1 1 Diospyros rotundifolia 1 1 Alnus crispa 1 1 Haplophyton cimicidum 1 1 Diospyros undulata 1 1 Roylea elegans 1 1 Bruguiera gymnorrhiza 1 1 Gmelina arborea 1 1 Orthosphenia mexicana 1 1 Lumnitzera racemosa 1 1 Melilotus alba 2 1 Duboisia leichhardtii 1 1 Erythroxylum zambesiacum 1 1 Salvia beckeri 1 1 Cephalotaxus spp 1 1 Taxus cuspidata 3 1 Suaeda maritima 1 1 Rhizophora mucronata 1 1 Streblus asper 1 1 Plant Chemical Count Activity Count Dianthus sp. 1 1 Glechoma hirsuta 1 1 Phyllanthus flexuosus 1 1 Euphorbia broteri 1 1 Hyssopus ferganensis 1 1 Lemaireocereus thurberi 1 1 Holacantha emoryi 1 1 Casearia arborea 1 1 Fagonia cretica 1 1 Cephalotaxus wilsoniana 1 1 Hydnocarpus anthelminticus 2 1 Taxus sp 2 1 Zataria multiflora 1 1 Acinos thymoides 1 1 Ambrosia artemisiifolia 1 1 Rhododendron schotense 1 1 Sweetia panamensis 1 1 Thymelaea hirsuta 1 1 Argyreia nervosa 1 1 Carapa guianensis 1 1 Parthenium hysterophorus 1 1 Rhododendron anthopogon 1 1 Strobilanthes cusia 1 1 Dianthus superbus 1 1 Pyropolyporus fomentarius 1 1 Euphorbia hermentiana 1 1 Porteresia coarctata 1 1 2 Plant Chemical Count Activity Count Aerva lanata 1 1 Rivea corymbosa 1 1 Solanum mammosum 1 1 Juniperus horizontalis 1 1 Maytenus
    [Show full text]
  • Cytotoxic Sesquiterpenoid from the Stembark of Aglaia Argentea
    Research Journal of Chemistry and Environment_______________________________Vol. 22(Special Issue II) August (2018) Res. J. Chem. Environ. Cytotoxic Sesquiterpenoid from the Stembark of Aglaia argentea (Meliaceae) Harneti Desi1, Farabi Kindi1, Nurlelasari1, Maharani Rani1, Supratman Unang1* and Shiono Yoshihito2 1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadajaran, Jatinangor 45363, INDONESIA 2. Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, JAPAN *[email protected] Abstract reducing fever and for treating contused wound, coughs and Aglaia argentea also known as langsat hutan in skin diaseases16-18. Previous phytochemical studies of A. Indonesia is a higher plant traditionally used for argentea have revealed the presence of compounds with moisturizing the lungs, reducing fever and treating cytotoxic activity including cycloartane-type triterpenoids against KB cells19 and 3,4-secoapotirucallane-type contused wound, coughs and skin diseases. The triterpenoids against KB cells20, but there are no reports of stembark of A. argentea was successively extracted sesquiterpenes of this species before. with methanol. The methanolic extract then partitioned by n-hexane, ethyl acetate and n-butanol. The n-hexane Herein we isolated, determined the chemical structure and extract was chromatographed over a vacuum-liquid tested at P388 murine leukemia cells of one sesquiterpenoid chromatographed (VLC) column packed with silica gel compound from n-hexane extract of A. argentea. 60 by gradient elution. Material and Methods The VLC fractions were repeatedly subjected to General: The IR spectra were recorded on a Perkin-Elmer normal-phase column chromatography and spectrum-100 FT-IR in KBr. Mass spectra were obtained with a Synapt G2 mass spectrometer instrument.
    [Show full text]
  • University of Copenhagen, Rolighedsvej 25, 1958 Frederiksberg, Denmark
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Copenhagen University Research Information System Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia Turreira Garcia, Nerea; Argyriou, Dimitrios; Chhang, Phourin; Srisanga, Prachaya; Theilade, Ida Published in: Cambodian Journal of Natural History Publication date: 2017 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Turreira Garcia, N., Argyriou, D., Chhang, P., Srisanga, P., & Theilade, I. (2017). Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia. Cambodian Journal of Natural History, 2017(1), 76-101. Download date: 08. Apr. 2020 76 N. Turreira-García et al. Ethnobotanical knowledge of the Kuy and Khmer people in Prey Lang, Cambodia Nerea TURREIRA-GARCIA1,*, Dimitrios ARGYRIOU1, CHHANG Phourin2, Prachaya SRISANGA3 & Ida THEILADE1,* 1 Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 25, 1958 Frederiksberg, Denmark. 2 Forest and Wildlife Research Institute, Forestry Administration, Hanoi Street 1019, Phum Rongchak, Sankat Phnom Penh Tmei, Khan Sen Sok, Phnom Penh, Cambodia. 3 Herbarium, Queen Sirikit Botanic Garden, P.O. Box 7, Maerim, Chiang Mai 50180, Thailand. * Corresponding authors. Email [email protected], [email protected] Paper submitted 30 September 2016, revised manuscript accepted 11 April 2017. ɊɮɍɅʂɋɑɳȶɆſ ȹɅƺɁɩɳȼˊɊNJȴɁɩȷ Ʌɩȶ ɑɒȴɊɅɿɴȼɍɈɫȶɴɇơȲɳɍˊɵƙɈɳȺˊƙɁȪɎLJɅɳȴȼɫȶǃNjɅȷɸɳɀɹȼɫȶɈɩɳɑɑ ɳɍˊɄɅDžɅɄɊƗƺɁɩɳǷȹɭɸ
    [Show full text]
  • Lao People's Democratic Republic Peace Independence Democracy
    Lao People’s Democratic Republic Peace Independence Democracy Unity Prosperity 5 year management plan of Laving‐Lavern Provincial Protected Area, Savannakhet October 2010 1 Table of Contents Table of Contents ..................................................................................................................... 2 Introduction ............................................................................................................................. 5 Part 1 ‐ Background, physical and socio‐economic status of Laving Lavern PPA ....................... 6 1.1. Background ................................................................................................................................ 6 1.2. Physical status .......................................................................................................................... 6 1.2.1. Location and topography ............................................................................................................................. 6 1.2.2. Climate ......................................................................................................................................................... 7 1.3. Natural resources .............................................................................................................. 8 1.3.1. Forestry .................................................................................................................................. 8 1.3.2. Aquatic and Wildlife ....................................................................................................................................
    [Show full text]