Distribution of Chlorophytic Phytoplankton in Northern Thailand*

Total Page:16

File Type:pdf, Size:1020Kb

Distribution of Chlorophytic Phytoplankton in Northern Thailand* Biologia 63/6: 852—858, 2008 Section Botany DOI: 10.2478/s11756-008-0112-1 Distribution of chlorophytic phytoplankton in Northern Thailand* Yuwadee Peerapornpisal, Sutthawan Suphan,NetiNgearnpat & Jeeraporn Pekkoh Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand; e-mail: [email protected] Abstract: The distribution of phytoplankton was investigated in standing water bodies such as reservoirs, ponds and marshes. Thirty sampling sites in Northern Thailand were studied during 1998 – 2005. The water quality could be classified as oligotrophic–mesotrophic to eutrophic status. Twelve families, 51 genera and 181 species of chlorophytic phytoplankton were found. The dominant genera were Staurastrum spp., Cosmarium spp., Scenedesmus spp. and Pediastrum spp. The distribution of these species was mainly affected by the water quality. Key words: Chlorophyte; Desmidiaceae; phytoplankton; Thailand Introduction the aquatic ecosystem especially in open water food chains. Phytoplankton in stagnant water bodies is an impor- In this research, the biodiversity of chlorophytic tant biological indicator of water quality (Palmer & phytoplankton and the physico-chemical properties of Square 1977). These autotrophic organisms comprise water in water bodies were investigated during 1998– cyanophytes, chlorophytes, euglenoids, dinoflagellates, 2005. The dominant species of chlorophytic phyto- cryptophytes and diatoms. They reduce CO2 from the plankton in each different water quality category may atmosphere and produce O2 to the environment, and be useful to serve as an indicator of the water qual- thus potentially play an important in controlling global ity of stagnant water bodies in other tropical ar- warming. Besides, they are the primary producers in eas. Fig. 1. Map of Thailand (A) and the location of the sampling sites in northern Thailand (B). * Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia. c 2008 Institute of Botany, Slovak Academy of Sciences Chlorophytic phytoplankton in Northern Thailand 853 Table 1. List of main stagnant water bodies in northern Thailand investigated during this study. Large reservoir: capacity over 100 million m3 Medium reservoir: capacity between 10 million and 100 million m3) Small reservoir: capacity less than 10 million m3 Deep reservoir: maximum depth over 10 meters Station Study sites Provinces Characters of water resources 1. Chiang Saen (CS) Chiang Rai Medium and shallow reservoir 2. Kwan Phayao (PY) Phayao Large and shallow reservoir 3. Mae Tum (MT) Phayao Medium and shallow reservoir 4. Mae Kuang Udomtara Dam (MKD) Chiang Mai Large and deep reservoir 5. Mae Ngud Somboonchol Dam (MNg) Chiang Mai Large and deep reservoir 6. Huay Tueng Thao (HTT) Chiang Mai Medium and shallow reservoir 7. Mae Yen (MY) Chiang Mai Small and shallow reservoir 8. Mae Jok Luang (MJL) Chiang Mai Medium and shallow reservoir 9. Ang Kaew (AK) Chiang Mai Small and shallow reservoir 10. Doi Inthanon (DI) Chiang Mai Pond on high mountain (> 1,500 a.s.l) 11. Doi Tao (DT) Chiang Mai Medium and shallow reservoir 12. Chiang Mai Moat (CMM) Chiang Mai Artificial moat 13. Lamphun Moat (LPM) Lamphun Artificial moat 14. Sirikit Dam (SK) Uttaradit Large and deep reservoir 15. Bhumibol Dam (BB) Tak Large and deep reservoir 16. Municipal Pond I (MP I) Tak Oxidation pond 17. Huay Chalad (HC) Tak Small and shallow reservoir 18. Nong Jong Kham (NJK) Mae Hong Son Pond 19. Mae Kham Dam (MK) Lampang Medium and deep reservoir 20. Huay Luang Dam (HL) Lampang Medium and shallow reservoir 21. Mae Thang (MTh) Phrae Medium and shallow reservoir 22. Municipal Pond II (MP II) Nan Oxidation pond 23. Marsh I (Ma I) Nan Marsh 24. Huay Som Khem (HSK) Pitsanulok Small and shallow reservoir 25. Marsh II (Ma II) Pitsanulok Marsh 26. Ditch I (Di I) Sukhothai Ditch 27. Marsh III (Ma III) Sukhothai Marsh 28. Ditch II (Di II) Kampangphet Ditch 29. Bung Nang Rang (BNR) Phichit Large and shallow reservoir 30. Pak Huay Khon Kaen (PHK) Phetchaboon Medium and deep reservoir Material and methods Thirty stagnant water bodies in northern Thailand (reser- voirs, ponds, marshes and ditches) were sampled during 1998–2005 (Fig.1, Table 1). Samples were collected at 0.3 meter intervals of the maximum depth of each water re- source. The northern part of Thailand is on the Indochina Peninsula within the monsoonal belt. There are 3 seasons: the rainy season (June–September), the cool dry season (October–February), and the hot dry season (March–May). Measurement of some physico-chemical properties of water in the reservoirs was done at the sampling sites. The depth to which sunlight could penetrate was measured with a Secchi disc. The temperature was measured with a ther- mometer and pH levels were taken with a pH meter and dissolved oxygen (DO) was measured by the azide mod- ification method (Greenberg et al. 2005). Alkalinity was measured by methyl orange indicator method. BOD was measured using the azide modification method. Amounts of nutrients, i.e. soluble reactive phosphorus, nitrate nitrogen, and ammonium nitrogen were measured according to the method described by Greenberg et al. (2005). Chlorophyll a was measured by the method of ISO 10260 (1992). Turbid- ity was measured with a turbidity meter. The trophic sta- tus of water was evaluated from the main parameters (DO, BOD, conductivity, nitrate nitrogen, ammonium nitrogen, soluble reactive phosphorus and chlorophyll a) according to Lorraine & Vollenweider (1981), Wetzel (2001) and Peera- Fig. 2. Dendrogram showing clustering of groups of sampling pornpisal et al. (2004). sites; sampling site codes as in Table 2. 854 Y. Peerapornpisal et al. Table 2. Mean values of some physico-chemical factors, trophic status and dominant genera of sampling sites. St. = station, n = number of sampling times, Cond. = Conductivity, Turb. = Turbidity, O-M = oligotrophic-mesotrophic status, M = mesotrophic status, M-E = mesotrophic-eutrophic, status E = eutrophic status St. Periods n Cond. pH Turb. NO3-N PO4-N NH4-N Trophic Dominant (µS.cm−1) (NTU)(mg L−1)(mg L−1)(mg L−1) status genera 1. CS Jan 04 – Dec 05 4 105 7.02 14 0.9 0.18 0.04 O-M Cosmarium, Staurodesmus 2.MY Apr 99 – Mar 02 36 138 8.11 32 0.8 0.22 0.29 M Aulacoseira, Planktothrix 3. MT Apr 03 – Mar 04 3 101 7.77 18 0.5 0.09 0.1 O-M Ceratium 4. MKD Apr 99 – Jan 05 54 78 7.8 9 0.6 0.1 0.13 O-M Staurastrum, Microcystis 5. MNg Apr 00 – Mar 01 12 143 8.23 19 0.8 0.25 0.27 M Monorhaphidium, Peridinium 6. HTT Oct 01 – Sep 02 4 158 8.02 23 0.9 0.31 0.26 M Coelastrum, Pediastrum 7. MY May 04 – Apr 05 3 89 7.81 15 0.5 0.19 0.18 O-M Dinobryon 8. MJL Oct 02 – Apr 05 15 65 7.63 12 0.6 0.12 0.09 O-M Cosmarium, Staurodesmus 9. AK Apr 98 – Mar 05 36 144 7.98 28 1 0.34 0.18 M Peridinium, Anabaena 10. DI Apr 03 – Mar 04 2 81 5.92 11 0.3 0.08 0.07 O-M Pinnularia 11. DT May 02 – Sep 03 18 144 7.85 17 0.9 0.28 0.27 M Peridiniopsis, Coelastrum 12. CMM Apr 99 – Apr 05 14 355 8.31 56 1.8 0.56 0.65 E Euglena, Scenedesmus 13. LPM Jan 02 – Dec 03 12 318 8.25 48 1.9 0.67 0.53 E Cylindrospermopsis, Euglena 14. SK Dec 04 – Dec 05 4 77 7.69 15 0.6 0.06 0.11 O-M Botryococcus 15. BB Dec 04 – Dec 05 4 135 8.01 22 0.8 0.28 0.22 M Monoraphidium, Dictyosphaerium 16. MP I Nov 03 – Oct 04 3 299 8.3 77 2.2 0.76 0.78 E Euglena, Trachelomonas 17. HC Nov 03 – Oct 04 2 132 7.89 29 1 0.26 0.21 M Ankistrodesmus, Coelastrum 18. NJK Feb 01 – Jan 03 4 212 8.21 33 1.2 0.43 0.55 M-E Microcystis, Coelastrum 19. MK Nov 02 – Nov 03 6 112 7.79 15 0.7 0.07 0.08 O-M Ceratium, Botryococcus 20. HL Nov 02 – Nov 03 6 95 7.36 19 0.6 0.1 0.11 O-M Ceratium, Botryococcus 21. MTh Dec 03 – Dec 05 6 146 7.84 16 1.1 0.36 0.31 M Microcystis, Dictyosphaerium 22. MP II Dec 03 – Dec 05 6 229 8.25 50 1.8 0.49 0.41 M-E Anabaena, Cylindrospermopsis 23. Ma I Dec 04 – May 05 2 98 7.67 18 0.7 0.21 0.13 O-M Ceratium, Staurastrum 24. HSK Feb 01 – Jan 03 4 156 7.94 46 0.9 0.31 0.29 M Peridinium 25. Ma II Feb 01 – Jan 03 4 145 7.81 18 0.9 0.23 0.28 M Fragilaria, Pediastrum 26. Di I Nov 02 – Oct 03 2 90 7.72 23 0.5 0.17 0.14 O-M Closterium, Staurastrum 27. Ma III Nov 02 – Oct 03 2 152 7.83 17 1.1 0.3 0.36 M Pediastrum, Dictyosphaerium 28. Di II Dec 04 1 81 7.65 14 0.5 0.13 0.04 O-M Cosmarium, Staurastrum 29. BNR Dec 04 – Dec 05 2 157 7.85 29 1 0.21 0.25 M Achnanthes 30. PHK Nov 03 – Dec 05 4 130 7.87 25 1.1 0.27 0.29 M Peridinium, Ankistrodesmus Fig. 3. Percentage of genera in each family of chlorophytic phytoplankton in stagnant water bodies of northern Thailand during 1998–2005.
Recommended publications
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Caracterização Da Diversidade De Eucariotas Fototróficos Provenientes De Águas Ácidas De Mina
    Universidade do Algarve Faculdade de Ciências e Tecnologia Caracterização da Diversidade de Eucariotas Fototróficos Provenientes de Águas Ácidas de Mina Telma Cristina Teixeira Valente Mestrado em Biologia Molecular e Microbiana Faro 2012 Universidade do Algarve Faculdade de Ciências e Tecnologia Telma Cristina Teixeira Valente (Licenciada em Bioquímica) Mestrado em Biologia Molecular e Microbiana Orientada por: Prof.ª Doutora Margarida P. Reis Prof.ª Doutora Filomena Fonseca CIMA – Laboratório de Ecologia Molecular e Microbiana Faro 2012 After a while you learn the subtle difference between holding a hand and chaining a soul and you learn that love doesn't mean leaning and company doesn't always mean security. And you begin to learn that kisses aren't contracts and presents aren't promises and you begin to accept your defeats with your head up and your eyes ahead with the grace of woman, not the grief of a child and you learn to build all your roads on today because tomorrow's ground is too uncertain for plans and futures have a way of falling down in mid-flight. After a while you learn that even sunshine burns if you get too much so you plant your own garden and decorate your own soul instead of waiting for someone to bring you flowers. And you learn that you really can endure you really are strong you really do have worth and you learn and you learn with every goodbye, you learn... Veronica Shoffstall 1971 Este trabalho é da exclusiva responsabilidade de: ____________________________________ Telma Valente Agradecimentos A realização deste trabalho não teria acontecido sem a boa influência de algumas pessoas que foram fundamentais.
    [Show full text]
  • Simultaneous Parsimony Jackknife Analysis of 2538 <Emphasis Type
    Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants Källersjö, Mari; Farris, James S.; Chase, Mark W.; Bremer, Birgitta; Fay, Michael F.; Humphries, Christopher J.; Petersen, Gitte; Seberg, Ole; Bremer, Kåre Published in: Plant Systematics and Evolution Publication date: 1998 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Källersjö, M., Farris, J. S., Chase, M. W., Bremer, B., Fay, M. F., Humphries, C. J., Petersen, G., Seberg, O., & Bremer, K. (1998). Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Systematics and Evolution, 213(3-4), 259-287. Download date: 28. sep.. 2021 Plant Pl. Syst. Evol. 213:259-287 (1998) Systematics and Evolution © Springer-Verlag 1998 Printed in Austria Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants MARI KÄLLERSJÖ, JAMES S. FARNS, MARK W. CHASE, BIRGITTABREMER, MICHAEL F. FAY, CHRISTOPHERJ. HUMPHRIES, GITTE PETERSEN, OLE SEBERG, and KÄRE BREMER Received October 16, t997; in revised version March 16, 1998 Key words: Parsimony jackknifing, phylogenetic analysis, large data sets, rbcL, DNA sequences, green plants, land plants, seed plants, flowering plants. Abstract" The ever-larger data matrices resulting from continuing improvements in DNA sequencing techniques require faster and more efficient methods of phylogenetic analysis. Here we explore a promising new method, parsimony jackknifing, by analyzing a matrix comprising 2538 sequences of the chloroplast gene rbcL.
    [Show full text]
  • Survey of Freshwater Algae from Karachi, Pakistan
    Pak. J. Bot., 41(2): 861-870, 2009. SURVEY OF FRESHWATER ALGAE FROM KARACHI, PAKISTAN R. ALIYA1, A. ZARINA2 AND MUSTAFA SHAMEEL1 1Department of Botany, University of Karachi, Karachi-75270, Pakistan 2Department of Botany, Federal Urdu University of Arts, Science & Technology, Gulshan-e-Iqbal Campus, Karachi-75300, Pakistan. Abstract Altogether 214 species of algae belonging to 86 genera of 33 families, 15 orders, 10 classes and 6 phyla were collected from various freshwater habitats in three towns of Karachi City during May 2004 and September 2005. Among various phyla, Cyanophycota was represented by 82 species (38.32%), Volvophycota by 78 species (36.45%), Euglenophycota by 4 species (1.87%), Chrysophycota by 2 species (0.93%), Bacillarophycota by 38 species (17.76%) and Chlorophycota by 10 species (4.67%). Members of the phyla Cyanophycota and Volvophycota were most prevalent (74.8%) and those of Euglenophycota and Chrysophycota poorly represented (2.8%). Introduction Karachi, the largest city of Pakistan is spread over a vast area of 3,530 km2 and includes a variety of ponds, streams, water falls, artificial and natural water reservoirs and two small ephemeral rivers with their branchlets, which inhabit several groups of freshwater algae. Only a few studies have been carried out in the past on different groups of these algae, either from a point of view of their habitats and general occurrence (Parvaiz & Ahmed, 1981; Shameel & Butt, 1984; Aisha & Hasni, 1991; Aisha & Zahid, 1991; Leghari et al., 2002) or from taxonomic viewpoint (Salim, 1954; Aizaz & Farooqui, 1972; Farzana & Nizamuddin, 1979; Ahmed et al., 1983). Recently, a study was made on the occurrence of algae within Karachi University Campus (Mehwish & Aliya, 2005).
    [Show full text]
  • Coccomyxa Parasitica Sp. Nov. (Coccomyxaceae, Chlorococcales), a Parasite of Giant Scallops in Newfoundland
    British Phycological Journal ISSN: 0007-1617 (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tejp19 Coccomyxa parasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfoundland Robert N. Stevenson & G. Robin South To cite this article: Robert N. Stevenson & G. Robin South (1974) Coccomyxaparasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfoundland, British Phycological Journal, 9:3, 319-329, DOI: 10.1080/00071617400650391 To link to this article: https://doi.org/10.1080/00071617400650391 Published online: 17 Feb 2007. Submit your article to this journal Article views: 218 Citing articles: 12 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Br. phycol. J. 9:319-329 11 September 1974 COCCOMYXA PARASITICA SP. NOV. (COCCO- MYXACEAE, CHLOROCOCCALES), A PARASITE OF GIANT SCALLOPS IN NEWFOUNDLAND By ROBERT N. STEVENSONand G. ROBIN SOUTH Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland, Canada Coccomyxa parasitica sp. nov. (Coccomyxaceae; Chlorococcales) is described as a parasite of the marine giant scallop, Placopecten magellanicus Gmelin, from Newfoundland, Canada. Cells occur in colonies distributed through various host organs, but especially in the mantle fold. Cell morphology is highly variable, although characterised by the possession of a distinct hyaline tip which is reduced or absent in culture. Pyrenoids are lacking, 1-3 parietal chloroplasts occur and the cell wall lacks cellulose. Reproduction is by 2, 4 or 8 autospores in the host, and by 2, 4, 8 or 16 autospores in culture. Sexual reproduction is lacking. Pigment analysis reveals the predominance of chlorophyll a, with chlorophyll b, ~- and E%carotene and neoxanthin also present.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Cryogenian Glacial Habitats As a Plant Terrestrialization Cradle – the Origin of Anydrophyta and Zygnematophyceae Split
    Cryogenian glacial habitats as a plant terrestrialization cradle – the origin of Anydrophyta and Zygnematophyceae split Jakub Žárský1*, Vojtěch Žárský2,3, Martin Hanáček4,5, Viktor Žárský6,7 1CryoEco research group, Department of Ecology, Faculty of Science, Charles University, Praha, Czechia 2Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada 3Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czechia 4Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czechia 5Regional Museum in Jeseník, Zámecké náměstí 1, 790 01 Jeseník, Czechia 6Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia 7Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia * Correspondence: [email protected] Keywords: Plant evolution, Cryogenian glaciation, Streptophyta, Charophyta, Anydrophyta, Zygnematophyceae, Embryophyta, Snowball Earth. Abstract For tens of millions of years (Ma) the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 to 635 Ma before present - Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants, but on a comprehensive set of eukaryotes, indicate within the Streptophyta, multicellular Charophyceae evolved
    [Show full text]
  • Universidad Nacional De San Agustin De Arequipa Facultad De Ciencias Biologicas Escuela Profesional De Biologia
    UNIVERSIDAD NACIONAL DE SAN AGUSTIN DE AREQUIPA FACULTAD DE CIENCIAS BIOLOGICAS ESCUELA PROFESIONAL DE BIOLOGIA DETERMINACIÓN DE LA RELACIÓN DE LA COMUNIDAD FITOPLANCTÓNICA CON LOS FACTORES FÍSICOS Y QUÍMICOS DEL SECTOR PUNO DE LA RESERVA NACIONAL DEL TITICACA, REGION PUNO, ABRIL – JULIO 2014. TESIS PRESENTADA POR LA BACHILLER: CYNTHIA KAREN ROMERO SANCHEZ PARA OPTAR EL TÍTULO PROFESIONAL DE BIÓLOGA ASESOR: MG. FRANCISCO VILLASANTE BENAVIDES AREQUIPA - PERÚ 2018 i ____________________________________ Asesor: Mg. Francisco Villasante Benavides ii JURADO _____________________________ Dr. Antonio Lazarte Rivera PRESIDENTE _____________________________ Mg. César Ranilla Falcón SECRETARIO _____________________________ Mg. Francisco Villasante Benavies INTEGRANTE iii DEDICATORIA. Dedico el presente trabajo de investigación a mi madre por ser una mujer admirable, mi ejemplo, mi guía, y porque a pesar de los momentos difíciles siempre ha estado apoyándome brindándome todo su amor, y con todo su sacrificio me ha dado una profesión, todo lo que soy es gracias a ella…te amo mamá. iv AGRADECIMIENTOS Agradezco a Dios ser maravilloso que me dio fuerza y fe para creer, crecer y seguir adelante; Al jefe y personal de la Reserva Nacional del Titicaca; al Blgo. Marcos Samuel Ríos Morales, por su apoyo incondicional durante los muestreos, al Mg. César Ranilla Falcón, por el asesoramiento en la determinación de especies de fitoplancton; a mí amigo Ursulo Yapo Pari, por su colaboración en la edición y preparación de imágenes. Y un agradecimiento especial a mi amigo, compañero, hermano Alex Paúl Dueñas Gonza, por el asesoramiento estadístico y porque en todo momento difícil me ha apoyado y me ha motivado a seguir adelante. v INDICE GENERAL CAPÍTULO I ______________________________________________________ 1 MARCO TEÓRICO _________________________________________________ 1 1.1.
    [Show full text]
  • Group I Introns Are Inherited Through Common Ancestry in the Nuclear-Encoded Rrna of Zygnematales
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 9916-9920, October 1994 Evolution Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae) (green algae/lateral traser/phylogeny/secondary structure) DEBASHISH BHATTACHARYA*t, BARBARA SUREK*, MATTHIAS RuSING*, SIMON DAMBERGERt, AND MICHAEL MELKONIAN* *UniversitAt zu Kdln, Botanisches Institut, Gyrhofstrasse 15, 50931 Cologne, Germany; and tDepartment of Molecular, Cellular, and Developmental Biology, University of Colorado, Porter Biosciences Building, Campus Box 347, Boulder, CO 80309-0347 Communicated by Thomas R. Cech, June 23, 1994 ABSTRACT Group I introns are found in organellar ge- suggests that they were introduced into the nucleus of nomes, in the genomes of eubacteria and phages, and in later-diverging species (i.e., Metakaryota) by gene transfer nuclear-encoded rRNAs. The origin and distribution of nucle- from the intron-containing cyanobacterium that gave rise to ar-encoded rRNA group I introns are not understood. To the plastid [i.e., tRNA'-eu group I intron (4, 9)] or the a purple elucidate their evolutionary relationships, we analyzed diverse eubacterium that gave rise to the mitochondrion. Group I nuclear-encoded small-subunit rRNA group I introns icluding introns have been found within protists that diverge after the nine sequences from the green-algal order Zygnematales Archezoa [e.g., Naegleria spp. (11, 12), Physarum polyceph- (Charophyceae). Phylogenetic analyses of group I introns and alum (13)] and before the radiation of the eukaryotic crown rRNA coding regions suggest that lateral transfers have oc- groups. curred in the evolutionary history of group I introns and that, To assess the origin and distribution of rRNA group I after transfer, some of these elements may form stable com- introns lacking ORFs, we analyzed a data set ofsmall-subunit ponents of the host-cell nuclear genomes.
    [Show full text]
  • Phylotranscriptomic Analysis of the Origin and Early Diversification Of
    Phylotranscriptomic analysis of the origin and early PNAS PLUS diversification of land plants Norman J. Wicketta,b,1,2, Siavash Mirarabc,1, Nam Nguyenc, Tandy Warnowc, Eric Carpenterd, Naim Matascie,f, Saravanaraj Ayyampalayamg, Michael S. Barkerf, J. Gordon Burleighh, Matthew A. Gitzendannerh,i, Brad R. Ruhfelh,j,k, Eric Wafulal, Joshua P. Derl, Sean W. Grahamm, Sarah Mathewsn, Michael Melkoniano, Douglas E. Soltish,i,k, Pamela S. Soltish,i,k, Nicholas W. Milesk, Carl J. Rothfelsp,q, Lisa Pokornyp,r, A. Jonathan Shawp, Lisa DeGironimos, Dennis W. Stevensons, Barbara Sureko, Juan Carlos Villarrealt,BéatriceRoureu, Hervé Philippeu,v, Claude W. dePamphilisl, Tao Chenw, Michael K. Deyholosd, Regina S. Baucomx, Toni M. Kutchany, Megan M. Augustiny,JunWangz, Yong Zhangv, Zhijian Tianz,ZhixiangYanz,XiaoleiWuz,XiaoSunz, Gane Ka-Shu Wongd,z,aa,2, and James Leebens-Mackg,2 aChicago Botanic Garden, Glencoe, IL 60022; bProgram in Biological Sciences, Northwestern University, Evanston, IL 60208; cDepartment of Computer Science, University of Texas, Austin, TX 78712; dDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; eiPlant Collaborative, Tucson, AZ 85721; fDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; gDepartment of Plant Biology, University of Georgia, Athens, GA 30602; hDepartment of Biology and iGenetics Institute, University of Florida, Gainesville, FL 32611; jDepartment of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475; kFlorida Museum of
    [Show full text]
  • New Chlorococcales Species in the Danube Hybrid Algae?
    Acta Biologica Szeged. 25 (3—4), pp. 7—12 (1979) NEW CHLOROCOCCALES SPECIES IN THE DANUBE HYBRID ALGAE? T. HORTOBÁGYI Department of Botany, University Gödöllő (Received February 18, 1979) Abstract Three new Chlorococcales species, observed by the author in the Budapest reaches of the Danube, are reported on: Actinastrum mixtum HORTOB. n. sp., Micractinium extremum HORTOB. n. sp., Tetrastrum nonsens HORTOB. n. sp. The supposition of hybrid character is justified by the appearance of all the three organisms. The coenobia of Actinastrum mixtum HORTOB. are built of cells of two types. One of the cell types agrees with the cells of Actinastrum gracillimum G. N. SMITH, the other with those of Ac- tinastrum aciculare PLAYF. Micractinium extremum HORTOB. combines the characteristics of Micractinium pusillum FRES. and of Micractinium crassisetum HORTOB. On the cells of Tetrastrum nonsens Hortob. the characteristics of Tetrastrum parallelum Hortob. and of Tetrastrum staurogeniaeforme (Schroed.) Lemm. can be observed. Although the most characteristic way of the reproduction of Chlorococcales is the autospore- sormation, zoogamy also occurs in some genera. And by this the possibility of hybridization is fupported. Hereinafter, the description of three new species is published, in respect of whose origin the question may come up, if they aren't hybrid descendants. Actinastrum mixtum HORTOB. n.sp. (Figs. 1-5) In the reaches of the Danube at Budapest, on 28 August, 1974, at river kms 1586 and 1608, as well as on 16 September, 1975 at river km 1643, it did not belong to the rare algae. In August, the temperature of water was 20.8 °C, pH 7.85; in September, water temperature was 16.5 °C, pH 7.96.
    [Show full text]