<<

Biologia 63/6: 852—858, 2008 Section DOI: 10.2478/s11756-008-0112-1

Distribution of chlorophytic phytoplankton in Northern Thailand*

Yuwadee Peerapornpisal, Sutthawan Suphan,NetiNgearnpat & Jeeraporn Pekkoh

Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand; e-mail: [email protected]

Abstract: The distribution of phytoplankton was investigated in standing water bodies such as reservoirs, ponds and marshes. Thirty sampling sites in Northern Thailand were studied during 1998 – 2005. The water quality could be classified as oligotrophic–mesotrophic to eutrophic status. Twelve families, 51 genera and 181 species of chlorophytic phytoplankton were found. The dominant genera were Staurastrum spp., Cosmarium spp., Scenedesmus spp. and Pediastrum spp. The distribution of these species was mainly affected by the water quality. Key words: Chlorophyte; Desmidiaceae; phytoplankton; Thailand

Introduction the aquatic ecosystem especially in open water food chains. Phytoplankton in stagnant water bodies is an impor- In this research, the biodiversity of chlorophytic tant biological indicator of water quality (Palmer & phytoplankton and the physico-chemical properties of Square 1977). These autotrophic organisms comprise water in water bodies were investigated during 1998– cyanophytes, chlorophytes, euglenoids, dinoflagellates, 2005. The dominant species of chlorophytic phyto- cryptophytes and diatoms. They reduce CO2 from the plankton in each different water quality category may atmosphere and produce O2 to the environment, and be useful to serve as an indicator of the water qual- thus potentially play an important in controlling global ity of stagnant water bodies in other tropical ar- warming. Besides, they are the primary producers in eas.

Fig. 1. Map of Thailand (A) and the location of the sampling sites in northern Thailand (B).

* Presented at the International Symposium Biology and of Green V, Smolenice, June 26–29, 2007, Slovakia.

c 2008 Institute of Botany, Slovak Academy of Sciences Chlorophytic phytoplankton in Northern Thailand 853

Table 1. List of main stagnant water bodies in northern Thailand investigated during this study. Large reservoir: capacity over 100 million m3 Medium reservoir: capacity between 10 million and 100 million m3) Small reservoir: capacity less than 10 million m3 Deep reservoir: maximum depth over 10 meters

Station Study sites Provinces Characters of water resources

1. Chiang Saen (CS) Chiang Rai Medium and shallow reservoir 2. Kwan Phayao (PY) Phayao Large and shallow reservoir 3. Mae Tum (MT) Phayao Medium and shallow reservoir 4. Mae Kuang Udomtara Dam (MKD) Chiang Mai Large and deep reservoir 5. Mae Ngud Somboonchol Dam (MNg) Chiang Mai Large and deep reservoir 6. Huay Tueng Thao (HTT) Chiang Mai Medium and shallow reservoir 7. Mae Yen (MY) Chiang Mai Small and shallow reservoir 8. Mae Jok Luang (MJL) Chiang Mai Medium and shallow reservoir 9. Ang Kaew (AK) Chiang Mai Small and shallow reservoir 10. Doi Inthanon (DI) Chiang Mai Pond on high mountain (> 1,500 a.s.l) 11. Doi Tao (DT) Chiang Mai Medium and shallow reservoir 12. Chiang Mai Moat (CMM) Chiang Mai Artificial moat 13. Lamphun Moat (LPM) Lamphun Artificial moat 14. Sirikit Dam (SK) Uttaradit Large and deep reservoir 15. Bhumibol Dam (BB) Tak Large and deep reservoir 16. Municipal Pond I (MP I) Tak Oxidation pond 17. Huay Chalad (HC) Tak Small and shallow reservoir 18. Nong Jong Kham (NJK) Mae Hong Son Pond 19. Mae Kham Dam (MK) Lampang Medium and deep reservoir 20. Huay Luang Dam (HL) Lampang Medium and shallow reservoir 21. Mae Thang (MTh) Phrae Medium and shallow reservoir 22. Municipal Pond II (MP II) Nan Oxidation pond 23. Marsh I (Ma I) Nan Marsh 24. Huay Som Khem (HSK) Pitsanulok Small and shallow reservoir 25. Marsh II (Ma II) Pitsanulok Marsh 26. Ditch I (Di I) Sukhothai Ditch 27. Marsh III (Ma III) Sukhothai Marsh 28. Ditch II (Di II) Kampangphet Ditch 29. Bung Nang Rang (BNR) Phichit Large and shallow reservoir 30. Pak Huay Khon Kaen (PHK) Phetchaboon Medium and deep reservoir

Material and methods Thirty stagnant water bodies in northern Thailand (reser- voirs, ponds, marshes and ditches) were sampled during 1998–2005 (Fig.1, Table 1). Samples were collected at 0.3 meter intervals of the maximum depth of each water re- source. The northern part of Thailand is on the Indochina Peninsula within the monsoonal belt. There are 3 seasons: the rainy season (June–September), the cool dry season (October–February), and the hot dry season (March–May). Measurement of some physico-chemical properties of water in the reservoirs was done at the sampling sites. The depth to which sunlight could penetrate was measured with a Secchi disc. The temperature was measured with a ther- mometer and pH levels were taken with a pH meter and dissolved oxygen (DO) was measured by the azide mod- ification method (Greenberg et al. 2005). Alkalinity was measured by methyl orange indicator method. BOD was measured using the azide modification method. Amounts of nutrients, i.e. soluble reactive phosphorus, nitrate nitrogen, and ammonium nitrogen were measured according to the method described by Greenberg et al. (2005). Chlorophyll a was measured by the method of ISO 10260 (1992). Turbid- ity was measured with a turbidity meter. The trophic sta- tus of water was evaluated from the main parameters (DO, BOD, conductivity, nitrate nitrogen, ammonium nitrogen, soluble reactive phosphorus and chlorophyll a) according to Lorraine & Vollenweider (1981), Wetzel (2001) and Peera- Fig. 2. Dendrogram showing clustering of groups of sampling pornpisal et al. (2004). sites; sampling site codes as in Table 2. 854 Y. Peerapornpisal et al.

Table 2. Mean values of some physico-chemical factors, trophic status and dominant genera of sampling sites. St. = station, n = number of sampling times, Cond. = Conductivity, Turb. = Turbidity, O-M = oligotrophic-mesotrophic status, M = mesotrophic status, M-E = mesotrophic-eutrophic, status E = eutrophic status

St. Periods n Cond. pH Turb. NO3-N PO4-N NH4-N Trophic Dominant (µS.cm−1) (NTU)(mg L−1)(mg L−1)(mg L−1) status genera

1. CS Jan 04 – Dec 05 4 105 7.02 14 0.9 0.18 0.04 O-M Cosmarium, Staurodesmus 2.MY Apr 99 – Mar 02 36 138 8.11 32 0.8 0.22 0.29 M Aulacoseira, Planktothrix 3. MT Apr 03 – Mar 04 3 101 7.77 18 0.5 0.09 0.1 O-M Ceratium 4. MKD Apr 99 – Jan 05 54 78 7.8 9 0.6 0.1 0.13 O-M Staurastrum, Microcystis 5. MNg Apr 00 – Mar 01 12 143 8.23 19 0.8 0.25 0.27 M Monorhaphidium, Peridinium 6. HTT Oct 01 – Sep 02 4 158 8.02 23 0.9 0.31 0.26 M Coelastrum, Pediastrum 7. MY May 04 – Apr 05 3 89 7.81 15 0.5 0.19 0.18 O-M Dinobryon 8. MJL Oct 02 – Apr 05 15 65 7.63 12 0.6 0.12 0.09 O-M Cosmarium, Staurodesmus 9. AK Apr 98 – Mar 05 36 144 7.98 28 1 0.34 0.18 M Peridinium, Anabaena 10. DI Apr 03 – Mar 04 2 81 5.92 11 0.3 0.08 0.07 O-M Pinnularia 11. DT May 02 – Sep 03 18 144 7.85 17 0.9 0.28 0.27 M Peridiniopsis, Coelastrum 12. CMM Apr 99 – Apr 05 14 355 8.31 56 1.8 0.56 0.65 E , Scenedesmus 13. LPM Jan 02 – Dec 03 12 318 8.25 48 1.9 0.67 0.53 E Cylindrospermopsis, Euglena 14. SK Dec 04 – Dec 05 4 77 7.69 15 0.6 0.06 0.11 O-M Botryococcus 15. BB Dec 04 – Dec 05 4 135 8.01 22 0.8 0.28 0.22 M Monoraphidium, Dictyosphaerium 16. MP I Nov 03 – Oct 04 3 299 8.3 77 2.2 0.76 0.78 E Euglena, Trachelomonas 17. HC Nov 03 – Oct 04 2 132 7.89 29 1 0.26 0.21 M Ankistrodesmus, Coelastrum 18. NJK Feb 01 – Jan 03 4 212 8.21 33 1.2 0.43 0.55 M-E Microcystis, Coelastrum 19. MK Nov 02 – Nov 03 6 112 7.79 15 0.7 0.07 0.08 O-M Ceratium, Botryococcus 20. HL Nov 02 – Nov 03 6 95 7.36 19 0.6 0.1 0.11 O-M Ceratium, Botryococcus 21. MTh Dec 03 – Dec 05 6 146 7.84 16 1.1 0.36 0.31 M Microcystis, Dictyosphaerium 22. MP II Dec 03 – Dec 05 6 229 8.25 50 1.8 0.49 0.41 M-E Anabaena, Cylindrospermopsis 23. Ma I Dec 04 – May 05 2 98 7.67 18 0.7 0.21 0.13 O-M Ceratium, Staurastrum 24. HSK Feb 01 – Jan 03 4 156 7.94 46 0.9 0.31 0.29 M Peridinium 25. Ma II Feb 01 – Jan 03 4 145 7.81 18 0.9 0.23 0.28 M Fragilaria, Pediastrum 26. Di I Nov 02 – Oct 03 2 90 7.72 23 0.5 0.17 0.14 O-M Closterium, Staurastrum 27. Ma III Nov 02 – Oct 03 2 152 7.83 17 1.1 0.3 0.36 M Pediastrum, Dictyosphaerium 28. Di II Dec 04 1 81 7.65 14 0.5 0.13 0.04 O-M Cosmarium, Staurastrum 29. BNR Dec 04 – Dec 05 2 157 7.85 29 1 0.21 0.25 M Achnanthes 30. PHK Nov 03 – Dec 05 4 130 7.87 25 1.1 0.27 0.29 M Peridinium, Ankistrodesmus

Fig. 3. Percentage of genera in each family of chlorophytic phytoplankton in stagnant water bodies of northern Thailand during 1998–2005. Phytoplankton was sampled at the maximum depth The trophic status of water was determined according of each water resource using a plankton net (mesh size10 to the methods of Lorraine & Vollenweider (1981), Wetzel µm). The samples were obtained by filtering 20 litres of wa- (2001) and Peerapornpisal et al. (2004). ter samples to which 0.7 mL of Lugol’s solution per 100 The computer statistical package SPSS for Windows mL sample was added to preserve phytoplankton samples. version 14.0 was used to perform statistical analysis, anal- Identification of phytoplankton species was carried out ac- ysis of variance, correlation and regression of the relation- cording to Huber-Pestalozzi (1983), F¨orster (1982), Prescott ships between chlorophytic phytoplankton and environmen- (1970), Bold & Wynne (1985), John et al. (2002) and Wehr tal parameters. & Sheath (2003). For detailed identification of the genera Results and discussions and species, several special publications from tropical envi- ronments were used; Yamagishi & Kanetsuna (1987), Hirano (1975, 1992). Cells were counted using a counting cham- Most of the sampling stations were within the same ber slide or haemacytometer and calculated as number of geographical area. At station 10 which was a pond on cell mL−1. the highest mountain of Thailand, most of the nutrients Chlorophytic phytoplankton in Northern Thailand 855

Table 3. Lists and distribution of chlorophytic phytoplankton Table 3. (continued) species in the stagnant water bodies of northern Thailand.

List of species Stations List of species Stations

Order Volvocales Nephrocytium limneticum (G. M. Sm.) 2,15 Family Chlamydomonadaceae G. M. Sm. Chlamydomonas sp. 2, 5,11 Nephrocytium sp. 5,9,29 C. gloeopara Rodhe et Skuja 9,14 Obocystis marsonii Lemmerm. 6,9 C. pertyi Gorozh. 5,12 Oocystis sp. 1 1,6,21 Family Volvocaceae Oocystis sp. 2 5,17 Eudorina elegans Ehrenb. 2,21 Schroedoria setigera (Schr¨od.) Lemmerm. 8,15 Eudorina sp. 5,8 Selenastrum sp. 6,7,27 Gonium pectorale O.F. M¨ull. 6,25 Tetraedron caudatum (Corda) Hansg. 1,2,5 Pandorina morum (O.F. M¨ull.) Bory 5,9 T. incus Sm. 5,27 Volvox sp. 1 26 T. minimum Hansg. 9,11,29 Volvox sp. 2 2 T. triangulare K¨utz. 3,15 Order Tetrasporales T. trigonum (N¨ageli) Hansg. 1,3 Family Coccomyxaceae Treubaria setigera (W. Archer) Sm. 1,4 Elakatothrix viridis Skuja 1,4 T. triappendiculata C. Bernard 3,15 Elakatothrix sp. 1 3,5,30 Family Scenedesmaceae Elakatothrix sp. 2 2,7,15 Actinastrum aciculare Playfair 1,3,4 Order A. gracillimum G.M. Sm. 11,27 Family Chlorococcaceae A. hantzchii var. hantzchii Lagerh. 15 Chlorococcum minutus R.C. Starr 5,6,22 A. hantzchii var. subtile Wolosz. 5,29 Chlorococcum sp. 1,9,11,30 Crucigenia crucifera (Wille) Collins 2 Golenkinia radiata F. Chodat 2,8,24 C. irregularis Wille 8,15 Golenkinia sp. 3,5 Cruciginiella rectangularis (N¨ageli) Komárek 4,15 Family Hydrodictyaceae C. smithii (Bourr. & Manguin) Komárek 8,17 Pediastrum angutosum (Ehrenb.) 6,25 C. truncata (Smith) Komárek 5 ex Menegh. var. angutosum Didymocystis comasii Komárek 9,15 P. biradiatum Meyen 2,21 Micractinium quadrisetum (Lemmerm.) 1,30 P. biradiatum var. longecornutum Gutw. 5 G. M. Sm. P. duplex Meyen 4,5,18 M. pusillum Fresen. 5,29 P. duplex var. gracillimum W. et G.S.West 5,39 Scenedesmus acuminatus (Legerh.) Chodat 6,7,9,11,22,27 P. longicornutum (Gutw.) Comas 9,18 S. apiculatus var. indicus Hortobágyi 5,21, P. obtusum Lucks 2,27 S. bicaudatus Dedus. 6,14 P. simplex var. biwaense Fukush 11,24 S. calyptratus Comas 12 P. simplex var. echinulatum Wittr. 5 S. clathratus Biswas 5,29 P. simplex var. simplex Meyen 2,4,5,6,9, S. communis E. Hegew. 2,21 11,18,24,30 S. dimorphus (Turpin) K¨utz. 6,29 P. simplex var. sturmii (Reinsch) Wolle 3,5 S. intermedius Chodat 4,17 P. tetras (Ehrenb.) Ralfs 4,6,27 S. javanensis Chodat 6,24 Sorastrum americanum (Bohlin) Schmidle 1,7 S. opoliensis Hortob. 2,12 S. spinulosum N¨ageli 3,8 S. pectinatus Meyen 11 Family Oocystaceae S. perforatus Lemmerm. var. perforatus 2,13 Ankistrodesmus bibraianus (Reinsch) Korshikov 5,27 S. spinosus Chodat 11,29 A. convolutus Corda 15,25 S. regularis Swir. 12 A. falcatus (Corda) Ralfs 6,17,30 S. quadricauda (Turpin) Bréb. 2,17 A. falcatus var. radiatus (Chodat) Lemmerm. 9,17 Tetrastrum heteracanthum (Nordst.) Chodat 1,29 A. fusiformis Corda 5,23 T. komarekii Hindák 8 A. spiralis W.B.Turner 11,17 Family Coelastraceae Ankistrodesmus sp. 6,17 Coelastrum astroideum De Not. 3,5,9,18 Chlorella sp. 1,6,7 C. microsporum (N¨ageli) A. Braun 2,6,11,18 Closteriopsis longissima var. tropica W. 1,4 C. polychordum (Koršinov) Hindák 2,5,11,28 et G.S.West C. reticulatum (P. A. Dang.) Senn 6,9,13 Dictyosphaerium ehrenbergianum N¨ageli 2,11,17 C. sphaericum N¨ageli 11,17,28 D. granulatum Hindák 9,15,27 Coelastrum sp. 11,15 D. pulchellum H.C. Wood 4,9,15,29 Family Botryococcaceae D. sphaegnale Hindák 2,8,27 Botryococcus braunii K¨utz. 3,4,6,14 D. tetrachotomum Printz 5,9,15,17 B. prototuberans W. et G.S. West 8,19,20 D. tetrachotonum var.fallaxKomárek 11,21,27 Botryococcus sp. 7,15 Dictyosphaerium sp. 3,11 Order Oedogoniales Dimorphococcus lunatus A. Braun 7,30 Family Oedogoniaceae Kirchneriella lunaris (Kirchn.) K. M¨obius 6,27 Oedogonium sp. 1,28 K. pseudoaperta Komárek 9,15 Order Monoraphidium arcuatum (Korshikov) Hindák 2,5,16 Family M. caribeum Hindak 5,9,25 Cylindrocystis brebissonii Menegh. ex de Bary 1,22 M. circinale (Nygaard) Nygaard 2,21 C. crassa de Bary 10 M. contortum (Thur.) Komárk.-Legn. 6,15 Netrium digitus (Ehrenb. ex Ralfs) Itzigs. 2,28 M. griffithii (Berk.) Komárk.-Legn. 4,6,15 et Rothe M. komarkovac Nygaard 8,21 N. digitus var. parvum (Bréb.) Willi Krieg. 23 M. tortile (W. et G.S.West) Komárk.-Legn. 3,15,30 Netrium sp. 23 Monoraphidium sp. 15,27 Spirotaenia condensata Bréb. 2,23 856 Y. Peerapornpisal et al.

Table 3. (continued) Table 3. (continued)

List of species Stations List of species Stations

Family Desmidiaceae S. planum (Wolle) W. et G.S. West 2 Actinotaenium sp. 1,26 Triploceras gracile Bailey 4 Closterium acutum Bréb. 22,26 Xanthidium hastiferum var. javanicum 4,22,28 C. kuetzingii Bréb. 1,2 (Nordst.) W. B. Turner C. navicula (Bréb.) L¨utkem¨uller 2 Xanthidium sp. 1,8 C. parvulum N¨ageli 2 Cosmarium askenasyi Schmidle 28 C. capitulum Roy & Bisset 4,8 C. cf. holmiense var. integrum P. Lundell 7,22 C. cf. repandum Nordst. 4,5,8 C. contractum Kirchn. 1,3,4,7,8, were lower than at the other sites (Table 2). The av- 14,19,28 erage water quality could be classified as oligotrophic- C. contractum Kirchn. var. ellipsoideum W. 2,3,4,8,9,15 mesotrophic to eutrophic status (Table 2). The clus- et G.S. West ter analysis dendrogram showed four distinct groups C. javanicum Nordst. 1,8,28 C. moniliforme (Turpin) Ralfs 4,8,19 (Fig. 2). In the first group, 13 stations of meso- C. moniliforme var. panduriforme 4,14 eutrophic status were included (stations 2, 5, 6, 9, 11, (Heimerl) Schmidle 15, 17, 21, 24, 25, 27, 29 and 30). The second group in- C. punctulatum Bréb. 5,26,28 cluded the oligo-mesotrophic group (stations 1, 3, 4, 7, C. regnellii Wille var. minimum 4,8 Eichl. & Gutw. 8, 14, 19, 20, 23, 26 and 28). The third group comprised C. sexangulare P. Lundell 5,8,29 2 stations which were classified as meso-eutrophic (sta- C. subturgidium (W.B. Turner) 18 tions 18 and 22), whereas the remaining 3 eutrophic sta- forma minor Schmidle tions (stations 12, 13 and 16) formed the fourth group. C. tinctum Ralfs 3,7 C. variolatum P. Lundell var. variolatum 17 Although seasonal differences in water quality might be Cosmarium sp. 1 1,5 related to rainfall because as that could could alter the Cosmarium sp. 2 2 physico-chemical properties at sampling sites, the nu- Desmidium baileyi (Ralfs) Nordst. 1,28 trient concentrations at most sites varied only slightly. D. swartzii C. Agardh ex Ralfs 2 Desmidium sp. 14 The mean values of some physico-chemical factors, Euastrum ansatum Ralfs 2,28 the trophic status and the dominant genera of each sam- E. denticulatum Gay 7,28 pling site are shown in Table 2. The chlorophytic phy- E. cf. didelta Ralfs 2,26 E. turneri W. West 2 toplankton in this investigation belonged to 5 orders, Gonotozygon aculeatum Hastings 23 12 families, i.e. Desmidiaceae 33%, Oocystaceae 23%, G. brebissonii de Bary 1,26 Scenedesmaceae 16%, Mesotaeniaceae 6%, Hydrodicty- G. monotaenium de Bary 2 aceae 7%, Volvocaceae, Coelastraceae 3%, Chlorococ- Hyalotheca mucosa Ralfs 8,28 Micraterias foliacea Bailey 20,26 caceae, Chlamydomonadaceae, Coccomyxaceae, Botry- M. pinnatifida (K¨utz.) Ralfs 4, ococcaceae 2% and Oedogoniaceae 1% (Fig.3). Staurastrum chaetoceras (Schr¨oder) G.M. Sm. 4,5 The dominant species were Cosmarium contrac- S. emaciatum A.M. Scott et Prescott 8 tum Kirchn., Staurastrum smithii Teiling, Pediastrum S. excavatum W. et G.S. West 6,28 simplex Scenedesmus acuminatus S. gracile Ralfs 2,4,5,8 Meyen and (Legerh.) S. gutwinskii C. Bernard 2,28 Chodat (Table 3). S. cf. lacustre G.M. Sm. 7,28 Phytoplankton compositions could be affected by S. limneticum var. burmense W. et G.S. West 4,9,28 different environmental factors (C¸elekli&K¨ulk¨oyl¨uo˘glu S. limneticum var. rectum Lemmerm. 1,28 S. longbrachiatum (Borge) Gutw. 2 2007). During the period of investigation, sampling S. manfeldtii Delponte 4,7 sites which were classified as mesotrophic status showed S. muticum Bréb. 2 different species compositions (Table 2 and 3). The S. octoverrucosum A.M. Scott et Gr¨onblad 1,4 species richness increased during the dry season and S. paradoxum W. et G.S. West 4,7,9,11 S. planum (Wolle) W. et G.S. West 10 decreased during the rainy season (data not shown). S. smithii Teiling 1,4,7,8,19,30 Some species were found in most sampling sites, nev- S. tetracerum (K¨utz.) Ralfs 2,4,5 ertheless, there were significant differences in phyto- S. tortum W. et G.S. West 4,8 plankton composition for each trophic category. Not S. trifidum Nordst. var. sorpectum Cwasd. 4,7 Staurodesmus colniculatus (P. Lundell) Teiling 2,4,22 only the diversity of the chlorophytic phytoplankton S. convergen var. convergen (Ehrenb.) Teiling 1,4, but also the occurrence of dominant species could be S. convergen var. labportei Teiling 8,20 used as an indicator for assessing the water quality S. curvatus (W.B.Turner) Thomasson var. latus 8,28 in each stagnant water body. Cosmarium contractum, (A.M. Scott et Prescott) S. cf. cripus var. obesus (W. et G.S. West) 4,22 for example, which was often found as a dominant Croasdale species in nutrient-poor to moderately nutrient-rich S. glaber (Ehrenb.) Teiling 4 lakes, could be used as bioindicator or/and biomoni- S. megacanthus (P. Lundell) Thunmark 1,4,8 tor in those type of water resources, in agreement with S. manillatus (Nordst.) Teiling 4,7,19 Pediastrum simplex Spondylosium javanicum (Gutw.) Gr¨onblad 4 Palmer & Square (1977). Similary, Meyen has been reported to dominate in a nutrient- Chlorophytic phytoplankton in Northern Thailand 857

Fig. 4: 1–24. Chlorophytic phytoplankton species observed in water bodies of northern Thailand during 1998–2005. 1 Cosmarium contractum,2Staurodesmus curvatus var. latus,3Staurastrum limneticum var. burmense,4Euastrum longicolle,5S. smithii,6 Spondylosium javanicum, 7 Cosmarium capitulum,8Triploceras gracile,9Xanthidium hastiferum var. javanicum,10Botryococcus protuberans,11Chlamydomonas gloeopara,12Coelastrum reticulatum,13Scenedesmus perforatus,14Dimorphococcus lunatus,15 Cruciginiella smithii,16Micractinium quadrisetum,17Pediastrum simplex,18P. duplex var. gracillimum,19Elakatothrix viridis,20 Volvox sp., 21 Gonium pectorale,22Cylindrocystis brebissonii,23Dictyosphaerium tetrachotomum,24Kirchneriella lunaris;scale10 µm.

rich reservoir (Palmer & Square 1977). A selection of of Thailand (PCD) for providing grants that supported this the chlorophytic phytoplankton species are illustrated research. in Fig. 4.

References Acknowledgements Greenberg A.E., Clesceri l.S. & Eaton A.D. 2005. Standard The authors would like to thank the Biodiversity Research Method for Examination of Water and Waste Water. 20th and Training Program (BRT), the National Research Coun- edition, American Public Health Association(APHA), Wash- cil of Thailand (NRCT) and Pollution Control Department ington DC. 858 Y. Peerapornpisal et al.

Bold H.C. & Wynne M.J. 1985. Introduction to the Algae: Struc- John D.M., Whitton B. A. & Brook A.J. 2002. The Freshwater ture and Reproduction. Prentice-Hall. Inc., Englewood Cliffs, Algal Flora of the British Isles. Cambridge University Press, New Jersey, 726 pp. Cambridge, 702 pp. C¸elekliA.& K¨ulk¨oyl¨uo˘glu O. 2007. On the relationship between Lorraine L.J. & Vollenweider R.A. 1981. Summary Report, the ecology and phytoplankton composition in a Karstic Spring OECD Cooperative Programme on Eutrophication. National (C¸ epni, Bolu). Ecological Indicator 7: 497–503. Water Research Institute, Burlington, 381 pp. F¨orster K., 1982. Conjugatophyceae, Zygnematales und Desmidi- Palmer M.C. & Square K. 1977. Algae and Water Pollution, Mu- ales (excl. ). In: Huber-Pestalozzi G. (ed.), nicipal Environmental Research Lab, Ohio, 123 pp. Das Phytoplankton des S¨uβwassers. Systematik und Biolo- Peerapornpisal Y., Chaiubol C., Pekkoh J., Kraibut H., Chorum gie. 8. Teil, 1. H¨alfe. (Die Binnengewβsser, Band XVI). E. M., Wannathong P., Ngernpat N., Jusakul K., Thammathi- Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 543 pp. wat A., Chuananta J. & Inthasotti T. 2004. The monitoring of Hirano M. 1992. Desmids from Thailand and Malaysia. Contr. water quality in Ang Kaew Reservior of Chaing Mai Univer- Boil. Lab. Kyoto.Univ. 28: 1–98. sity by using phytoplankton as bioindicator from 1995–2002. Hirano M. 1975. Phytoplankton from Lake Boraphet in the cen- ChiangMaiJ.Sci.31(1): 85–94. tral plain of Thailand. Biol. Lab. Kyoto. Univ. 4: 187–203. Prescott G.W. 1970. How to know fresh water algae. The pic- Huber-Pestalozzi G. 1983. Das Phytoplankton des s¨uβwassers: ture key nature series W.M.C. Brown Company Publishers, (G¨urnalgen) Ordnung Chlorococcales 7. Teil. Dubugue, Iowa, 293 pp. 1. H¨alfte. E. Schweizerbart’sche Verlagsbuchhandlung, Stutt- Yamagishi T. & Kanetsuna Y. 1987. The planktonic Chloro- gart, 914 pp. phyceae from Lake Boraphet (The Central Plain, Thailand) ISO 10260 1992. Water Quality – Measurement of Biochemical Gen. Educ. Rev. Coll. Agr. & Vet. Med. Nihon Univ. 23: Parameters – Spectrometric Determination of the Chloro- 19–38. phyll-a Concentration, International Standard. Technical Wehr J.D. & Sheath R.G. 2003. Freshwater algae of North Amer- Committee ISO/TC 147. Water Quality, Sub-Committee ica: Ecology and classification. Academic Press, California, SC2. Geneva: International Organization for Standardization 918 pp. Case Postale 56, CH-1211. Wetzel R.E. 2001. Limnology. Academic Press, London, 1006 pp.

Received September 1, 2007 Accepted March 17, 2008