Simultaneous Parsimony Jackknife Analysis of 2538 <Emphasis Type
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Plant Diversity Assessments in Tropical Forest of SE Asia
August 18, 2015, 6th International Barcode of Life Conference Barcodes to Biomes Plant Diversity Assessments in tropical forest of SE Asia Tetsukazu Yahara Center for Asian Conservation Ecology & Institute of Decision Science for a Sustainable Society Kyushu University, Japan Goal: assessing plant species loss under the rapid deforestation in SE Asia Laumonier et al. (2010) Outline • Assessing trends of species richness, PD and community structure in 32 permanent plots of 50m x 50m in Cambodia • Recording status of all the vascular plant species in 100m x 5m plots placed in Vietnam, Cambodia, Thailand, Malaysia and Indonesia • Assessing extinction risks in some representative groups: case studies in Bauhinia and Dalbergia (Fabaceae) Deforestation in Cambodia Sep. 2010 Jan. 2011 Recently, tropical lowland forest of Cambodia is rapidly disappearing; assessments are urgently needed. Locations of plot surveys in Cambodia Unknown taxonomy of plot trees Top et al. (2009); 88 spp (36%) of 243 spp. remain unidentified. Top et al. (2009); many species are mis-identified. Use of DNA barcodes/phylogenetic tree 32 Permanent plots in Kg. Thom 347 species Bayesian method 14 calibration points Estimated common ancestor of Angiosperms 159 Ma 141-199 Ma (Bell et al. 2010) Scientific name: ???? rbcL Local name: Kro Ob Ixonanthes chinensis (544/545) Specimen No.: 2002 Ixonanthes reticulata (556/558) Cyrillopsis paraensis (550/563) Power point slides are prepared for all the plot tree species Scientific name: Ixonanthaceae Ixonanthes reticulata Jack Bokor 240m Local name: Tromoung Sek Phnom matK Ixonanthes chinensis (747/754) Gaps= 0/754 No. 4238 Ixonanthes reticulata (746/754) Gaps= 0/754 # Syn. = Ixonanthes cochinchinensis Pierrei Cyrillopsis paraensis (710/754) Gaps= 0/754“ Ixonanthaceae Ixonanthes reticulata Jack 4238 Specimen image from Kew Herbarium Catalogue http://apps.kew.org/herbcat/gotoHomePage.do Taxonomic papers & Picture Guides Toyama et al. -
Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts. -
621 R. Kool Leiden)
Ixonanthaceae R. Kool Leiden) 2 This small family of or 3 Old World rain-forest genera was already recognized as a separate suprageneric taxon by PLANCHON (1847) and PLANCHON & KLOTZSCH (1856), who relegated it to the affinity of Ochnaceae, later correctly referred to Linaceae as a subfamily Ixonanthoideaeby HUB. WINKLER (1931) and finally recognized as a family of its own by EXELL & MENDONÇA (1951). the of the As to number genera containedin family, there is no unanimity of opinion. FORMAN 8 NOOTEBOOM that (1965: 523) referred genera to the family, but (1967) argued several belong to Simaroubaceae. After careful consideration 3 genera are admitted here in Ixonanthaceae sensu stricto: Cyrillopsis Kuhlm. from South America, Ochthocosmus BENTH. (incl. Phyllocosmus KLOTZSCH) from tropical America and Africa, and Ixonanthes JACK from Indo-Malesia. The three genera form a close-knit group. They are all small and the wide distributionin the tropics points to a high age of the group. We must mentionthat there is a, doubtful, fourth genus, Allantospermum FORMAN, which the author reckons to the Ixonanthaceae. It occurs with one species in Borneo and another one in Ma- NOOTEBOOM The dagascar. (1967, 1972) included this genus in Simaroubaceae. morphology, chemotaxonomy, and palynology corroborate this affinity, but the anatomy of wood and leaf (VAN WELZEN & BAAS, 1984) is just in favour of affinity with Ixonanthaceae. We refrain from a long discussion of the merits of HALLIER'S attempt (1923) to have Linaceae as a hugecomplex centre of affinities and confine ourselves to what is usually accepted nowadays in recognizing a few families grouped around Linaceae sensu stricto. -
Updated Angiosperm Family Tree for Analyzing Phylogenetic Diversity and Community Structure
Acta Botanica Brasilica - 31(2): 191-198. April-June 2017. doi: 10.1590/0102-33062016abb0306 Updated angiosperm family tree for analyzing phylogenetic diversity and community structure Markus Gastauer1,2* and João Augusto Alves Meira-Neto2 Received: August 19, 2016 Accepted: March 3, 2017 . ABSTRACT Th e computation of phylogenetic diversity and phylogenetic community structure demands an accurately calibrated, high-resolution phylogeny, which refl ects current knowledge regarding diversifi cation within the group of interest. Herein we present the angiosperm phylogeny R20160415.new, which is based on the topology proposed by the Angiosperm Phylogeny Group IV, a recently released compilation of angiosperm diversifi cation. R20160415.new is calibratable by diff erent sets of recently published estimates of mean node ages. Its application for the computation of phylogenetic diversity and/or phylogenetic community structure is straightforward and ensures the inclusion of up-to-date information in user specifi c applications, as long as users are familiar with the pitfalls of such hand- made supertrees. Keywords: angiosperm diversifi cation, APG IV, community tree calibration, megatrees, phylogenetic topology phylogeny comprising the entire taxonomic group under Introduction study (Gastauer & Meira-Neto 2013). Th e constant increase in knowledge about the phylogenetic The phylogenetic structure of a biological community relationships among taxa (e.g., Cox et al. 2014) requires regular determines whether species that coexist within a given revision of applied phylogenies in order to incorporate novel data community are more closely related than expected by chance, and is essential information for investigating and avoid out-dated information in analyses of phylogenetic community assembly rules (Kembel & Hubbell 2006; diversity and community structure. -
Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001
Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Kadoorie Farm and Botanic Garden in collaboration with Zhongshan University Zhaoqing Forestry Bureau February 2004 South China Forest Biodiversity Survey Report Series: No. 37 (Online Simplified Version) Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Editors Bosco P.L. Chan, Ng Sai-Chit, Michael W.N. Lau and John R. Fellowes Contributors Kadoorie Farm and Botanic Garden: Michael W.N. Lau (ML) Bosco P.L. Chan (BC) John R. Fellowes (JRF) Lee Kwok Shing (LKS) Ng Sai-Chit (NSC) Roger Kendrick (RCK) Zhongshan University: Chang Hong (CH) Voluntary specialists: Graham T. Reels (GTR) Keith D.P. Wilson (KW) Background The present report details the findings of a trip to Northwest Guangdong by members of Kadoorie Farm and Botanic Garden (KFBG) in Hong Kong and their colleagues, as part of KFBG's South China Biodiversity Conservation Programme (renamed the China Programme in 2003). The overall aim of the programme is to minimise the loss of forest biodiversity in the region, and the emphasis in the first three years is on gathering up-to-date information on the distribution and status of fauna and flora. Citation Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 . South China Forest Biodiversity Survey Report Series (Online Simplified Version): No. 37. KFBG, Hong Kong SAR, ii + 33 pp. Copyright Kadoorie Farm and Botanic Garden Corporation Lam Kam Road, Tai Po, N.T., Hong Kong February 2004 - i - Contents Objectives ……………………………………………………………………………………. -
Vascular Plant Composition and Diversity of a Coastal Hill Forest in Perak, Malaysia
www.ccsenet.org/jas Journal of Agricultural Science Vol. 3, No. 3; September 2011 Vascular Plant Composition and Diversity of a Coastal Hill Forest in Perak, Malaysia S. Ghollasimood (Corresponding author), I. Faridah Hanum, M. Nazre, Abd Kudus Kamziah & A.G. Awang Noor Faculty of Forestry, Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia Tel: 98-915-756-2704 E-mail: [email protected] Received: September 7, 2010 Accepted: September 20, 2010 doi:10.5539/jas.v3n3p111 Abstract Vascular plant species and diversity of a coastal hill forest in Sungai Pinang Permanent Forest Reserve in Pulau Pangkor at Perak were studied based on the data from five one hectare plots. All vascular plants were enumerated and identified. Importance value index (IVI) was computed to characterize the floristic composition. To capture different aspects of species diversity, we considered five different indices. The mean stem density was 7585 stems per ha. In total 36797 vascular plants representing 348 species belong to 227 genera in 89 families were identified within 5-ha of a coastal hill forest that is comprises 4.2% species, 10.7% genera and 34.7% families of the total taxa found in Peninsular Malaysia. Based on IVI, Agrostistachys longifolia (IVI 1245), Eugeissona tristis (IVI 890), Calophyllum wallichianum (IVI 807), followed by Taenitis blechnoides (IVI 784) were the most dominant species. The most speciose rich families were Rubiaceae having 27 species, followed by Dipterocarpaceae (21 species), Euphorbiaceae (20 species) and Palmae (14 species). According to growth forms, 57% of all species were trees, 13% shrubs, 10% herbs, 9% lianas, 4% palms, 3.5% climbers and 3% ferns. -
Freshwater Algae in Britain and Ireland - Bibliography
Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
Diversity of the Tree Flora in Semenggoh Arboretum, Sarawak, Borneo
Gardens’ Bulletin Singapore 64(1): 139–169. 2012 139 Diversity of the tree flora in Semenggoh Arboretum, Sarawak, Borneo C.Y. Ling1 and S. Julia2 Botanical Research Centre, Sarawak Forestry Corporation, Km 20, Jalan Puncak Borneo, 93250 Kuching, Sarawak [email protected] (corresponding author) [email protected] ABSTRACT. A 4-ha sample plot was established at the Arboretum, Semenggoh Forest Reserve to document tree species in this lowland mixed dipterocarp forest. The area assessed contains 2837 trees with diameter at breast height ≥ 10 cm belonging to 60 families, 160 genera and 541 species. Euphorbiaceae and Malvaceae (10 genera each) were the most diverse families at genus level and Dipterocarpaceae (61 species) is most diverse at species level. More than 25% of trees (720 individuals) were dipterocarps and contributed the highest basal area (cross-sectional area over-bark at breast height measured in m2) of 16.7 m2/ha. The most abundant species are Shorea multiflora (21 trees/ha) and Pouteria malaccensis (31 trees/ha) for dipterocarp and non-dipterocarp species, respectively. Semenggoh Arboretum has a rich and diverse flora and, being a natural primary forest in the middle of an increasingly developed area, Semenggoh is important as a genetic reservoir for threatened species (particularly the dipterocarps) and as an in-situ conservation site for Sarawak’s lowland mixed dipterocarp forest. Keywords. Borneo, Dipterocarpaceae, Sarawak, Semenggoh Arboretum, tree diversity Introduction Floristic composition studies or floristic analyses are a useful tool to understand the spatial pattern of plant composition and diversity. When combined with ecological, environmental, geological and historical variables, important information on mechanisms maintaining high levels of tree species diversity in tropical forest can be obtained (Slik et al. -
Cryogenian Glacial Habitats As a Plant Terrestrialization Cradle – the Origin of Anydrophyta and Zygnematophyceae Split
Cryogenian glacial habitats as a plant terrestrialization cradle – the origin of Anydrophyta and Zygnematophyceae split Jakub Žárský1*, Vojtěch Žárský2,3, Martin Hanáček4,5, Viktor Žárský6,7 1CryoEco research group, Department of Ecology, Faculty of Science, Charles University, Praha, Czechia 2Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada 3Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czechia 4Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czechia 5Regional Museum in Jeseník, Zámecké náměstí 1, 790 01 Jeseník, Czechia 6Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia 7Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia * Correspondence: [email protected] Keywords: Plant evolution, Cryogenian glaciation, Streptophyta, Charophyta, Anydrophyta, Zygnematophyceae, Embryophyta, Snowball Earth. Abstract For tens of millions of years (Ma) the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 to 635 Ma before present - Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants, but on a comprehensive set of eukaryotes, indicate within the Streptophyta, multicellular Charophyceae evolved