Universidad Nacional De San Agustin De Arequipa Facultad De Ciencias Biologicas Escuela Profesional De Biologia

Total Page:16

File Type:pdf, Size:1020Kb

Universidad Nacional De San Agustin De Arequipa Facultad De Ciencias Biologicas Escuela Profesional De Biologia UNIVERSIDAD NACIONAL DE SAN AGUSTIN DE AREQUIPA FACULTAD DE CIENCIAS BIOLOGICAS ESCUELA PROFESIONAL DE BIOLOGIA DETERMINACIÓN DE LA RELACIÓN DE LA COMUNIDAD FITOPLANCTÓNICA CON LOS FACTORES FÍSICOS Y QUÍMICOS DEL SECTOR PUNO DE LA RESERVA NACIONAL DEL TITICACA, REGION PUNO, ABRIL – JULIO 2014. TESIS PRESENTADA POR LA BACHILLER: CYNTHIA KAREN ROMERO SANCHEZ PARA OPTAR EL TÍTULO PROFESIONAL DE BIÓLOGA ASESOR: MG. FRANCISCO VILLASANTE BENAVIDES AREQUIPA - PERÚ 2018 i ____________________________________ Asesor: Mg. Francisco Villasante Benavides ii JURADO _____________________________ Dr. Antonio Lazarte Rivera PRESIDENTE _____________________________ Mg. César Ranilla Falcón SECRETARIO _____________________________ Mg. Francisco Villasante Benavies INTEGRANTE iii DEDICATORIA. Dedico el presente trabajo de investigación a mi madre por ser una mujer admirable, mi ejemplo, mi guía, y porque a pesar de los momentos difíciles siempre ha estado apoyándome brindándome todo su amor, y con todo su sacrificio me ha dado una profesión, todo lo que soy es gracias a ella…te amo mamá. iv AGRADECIMIENTOS Agradezco a Dios ser maravilloso que me dio fuerza y fe para creer, crecer y seguir adelante; Al jefe y personal de la Reserva Nacional del Titicaca; al Blgo. Marcos Samuel Ríos Morales, por su apoyo incondicional durante los muestreos, al Mg. César Ranilla Falcón, por el asesoramiento en la determinación de especies de fitoplancton; a mí amigo Ursulo Yapo Pari, por su colaboración en la edición y preparación de imágenes. Y un agradecimiento especial a mi amigo, compañero, hermano Alex Paúl Dueñas Gonza, por el asesoramiento estadístico y porque en todo momento difícil me ha apoyado y me ha motivado a seguir adelante. v INDICE GENERAL CAPÍTULO I ______________________________________________________ 1 MARCO TEÓRICO _________________________________________________ 1 1.1. ANTECEDENTES DE INVESTIGACIÓN _____________________________ 1 1.2. RESERVA NACIONAL DEL TITICACA ______________________________ 3 1.2.1. Sistema de las Áreas Naturales Protegidas (SINANPE)_____________ 3 1.2.2. Base Legal de las Áreas Naturales Protegidas____________________ 3 1.2.3. Objetivo de creación de la Reserva Nacional del Titicaca (RNT) ______ 4 1.2.4. Categoría y Estatus legal de la Reserva Nacional del Titicaca (RNT) __ 5 1.2.5. La Reserva Nacional del Titicaca en el Contexto Internacional _______ 5 1.2.6. Ubicación Extensión y Límites de la Reserva Nacional del Titicaca (RNT) ________________________________________________________ 6 1.2.7. Flora de la Reserva Nacional del Titicaca (RNT) __________________ 7 1.2.8. Fauna de la Reserva Nacional del Titicaca (RNT) _________________ 8 a). Vertebrados ____________________________________________ 8 b). Invertebrados __________________________________________ 9 1.2.9. Características Climáticas ____________________________________ 10 1.2.10. Cuerpo de Agua de la Reserva Nacional del Titicaca (RNT) _________ 11 1.2.11. Contaminación y Riesgos Ambientales de la Reserva Nacional del Titicaca (RNT) __________________________________ 11 1.2.12. Problemas ambientales de la Reserva Nacional del Titicaca (RNT) ____ 13 1.2.13. Conflictos Físicos Territoriales de la Reserva Nacional del Titicaca (RNT) __________________________________________ 13 1.3. FITOPLANCTON _______________________________________________ 14 1.3.1. CONCEPTOS GENERALES _________________________________ 14 1.3.2. CLASIFICACION TAXONOMICA DE FITOPLANCTON _____________ 15 1.3.2.1. DIVISIÓN/ PHYLUM CYANOPHYTA________________________ 15 1.3.2.2. DIVISIÓN PHYLUM CHLOROPHYTA _______________________ 16 1.3.2.3. DIVISIÓN/ PHYLUM EUGLENOPHYTA _____________________ 17 1.3.2.4. DIVISIÓN/PHYLUM CHRYSOPHYTA ______________________ 18 1.3.2.5. DIVISIÓN/PHYLUM BACILLARIOPHYTA ____________________ 18 1.3.2.6. DIVISIÓN PHYLUM PYRRHOPHYTA _______________________ 19 1.3.3. IMPORTANCIA DEL FITOPLANCTON COMO PRODUCTOR PRIMARIO ________________________________________________________ 19 vi 1.3.4. IMPORTANCIA DEL FITOPLANTON COMO INDICADORES DE CALIDAD DE AGUA ________________________________________________ 20 1.3.5. IMPORTANCIA DE LOS INDICADORES BIOLÓGICOS EN CALIDAD DE AGUA ___________________________________________________ 21 1.3.6. RELACION DEL FITOPLANTON Y PARAMETROS FISICO QUIMICOS EN HUMEDALES _____________________________________________ 21 1.4. PARAMETROS FISICO QUIMICOS ________________________________ 26 1.4.1. TEMPERATURA __________________________________________ 26 1.4.2. pH ______________________________________________________ 26 1.4.3. SOLIDOS EN SUSPENSION Y DISUELTOS _____________________ 27 1.4.4. CONDUCTIVIDAD _________________________________________ 28 1.4.5. OXIGENO DISUELTO ______________________________________ 29 1.4.6. NITRITOS________________________________________________ 29 1.4.7. NITRATOS _______________________________________________ 30 1.4.8. DBO5 O DEMANDA BIOQUIMICA DE OXIGENO A LOS 5 DIAS _____ 30 1.4.9. DQO O DEMANDA QUIMICA DE OXIGENO _____________________ 32 1.4.10. COLIFORMES TOTALES Y FECALES _________________________ 32 1.5. MARCO LEGAL ________________________________________________ 32 CAPÍTULO II _____________________________________________________ 35 MATERIALES Y METODOS _________________________________________ 35 2.1 UBICACIÓN DEL ÁREA DE ESTUDIO ______________________________ 35 2.2 LOCALIZACIÓN DE LOS PUNTOS DE MUESTREO ___________________ 35 2.3 DESCRIPCION DE LOS PUNTOS DE MUESTREO ____________________ 37 2.4 DISEÑO DE INVESTIGACIÓN ____________________________________ 38 2.5 IDENTIFICACIÓN DE VARIABLES _________________________________ 39 2.5.1 VARIABLES DE INTERÉS ___________________________________ 39 2.6 METODOLOGÍA DE CAMPO _____________________________________ 40 2.6.1 Evaluación de factores Fisicoquímicos __________________________ 41 2.6.2 Recolección de Muestras Fitoplanctonicas _______________________ 43 2.6.2.1 Muestreo por Punto Fijo ________________________________ 43 2.6.2.2 Muestreo por Arrastre __________________________________ 44 2.7 METODOLOGÍA DE LABORATORIO _______________________________ 45 2.7.1 Determinación de la riqueza específica de Fitoplancton ____________ 45 2.7.2 Determinación de la Abundancia de la comunidad fitoplanctónica _____ 46 2.8 TÉCNICAS DE ANÁLISIS ESTADÍSTICO ____________________________ 48 vii CAPÍTULO III _____________________________________________________ 49 RESULTADOS ____________________________________________________ 49 3.1 DETERMINACIÓN DE LA RIQUEZA ESPECÍFICA DE LA COMUNIDAD FITOPLANCTÓNICA DEL SECTOR PUNO DE LA RESERVA NACIONAL DEL TITICACA ________________________________________________________ 49 3.2 DETERMINACIÓN DE LA ABUNDANCIA, ABUNDACIA RELATIVA E ÍNDICE DE DIVERSIDAD DE SHANNON-WIENER DE LA COMUNIDAD FITOPLANCTÓNICA DEL SECTOR PUNO DE LA RESERVA NACIONAL DEL TITICACA ________________________________________________________ 53 3.3 EVALUACIÓN DE LOS FACTORES FÍSICO – QUÍMICOS (PROFUNDIDAD, TRANSPARENCIA, TEMPERATURA, CONDUCTIVIDAD, SALINIDAD, PH, OXÍGENO DISUELTO, COLIFORMES TOTALES, NITRATOS, NITRITOSFOSFATOS, DEMANDA QUÍMICA DE OXÍGENO Y DEMANDA BIOLÓGICA DE OXÍGENO) DEL SECTOR PUNO DE LA RESERVA NACIONAL DEL TITICACA __________________________________________ 69 3.4 DETERMINACIÓN DE LA RELACIÓN DE LA COMUNIDAD FITOPLANCTÓNICA CON LOS FACTORES FÍSICO-QUÍMICOS DEL SECTOR PUNO DE LA RESERVA NACIONAL DEL TITICACA, DEPARTAMENTO DE PUNO _________________________________________ 72 CAPITULO IV _____________________________________________________ 87 DISCUSION ______________________________________________________ 87 CAPITULO V _____________________________________________________ 92 CONCLUSIONES __________________________________________________ 92 RECOMENDACIONES _____________________________________________ 94 REFERENCIAS BIBLIOGRÁFICAS ____________________________________ 95 ANEXOS ________________________________________________________ 102 viii INDICE DE TABLAS Tabla 1. Coordenadas de ubicación de la Reserva Nacional del Titicaca ______ 6 Tabla 2. Clasificación del grado de contaminación de las aguas según DBO5 ___________________________________________________ 31 Tabla 3. Ubicación Geográfica de los puntos de muestreo según zonas de clasificación del sector Puno de la Reserva Nacional del Titicaca _____ 37 Tabla 4. Operacionalizacion de variables de investigación _________________ 39 Tabla 5. Riqueza taxonomica según Phylum de la comunidad Fitoplanctónica del sector Puno de la Reserva Nacional del Titicaca __________________________________________________ 49 Tabla 6. Riqueza taxonomicade la comunidad Fitoplanctónica según puntos de muestreo del sector Puno de la Reserva Nacional del Titicaca _______ 51 Tabla 7. Abundancia, abundancia relativa e índice de diversidad de Shannon-Wiener de la comunidad Fitoplanctónica en el punto 1(ZAM) de muestreo del sector Puno de la Reserva Nacional del Titicaca ______________________________________________ 53 Tabla 8. Abundancia, abundancia relativa e índice de diversidad de Shannon-Wiener de la comunidad fitoplanctónica en el punto 2 (ZAM) de muestreo del sector puno de la reserva nacional del Titicaca __________________________________________________ 55 Tabla 9. Abundancia, abundancia relativa e índice de diversidad de Shannon-Wiener de la comunidad Fitoplanctónica en el punto 3 (ZAP) de muestreo del sector Puno de la Reserva Nacional del Titicaca __________________________________________________ 57 Tabla 10. Abundancia, abundancia relativa e índice de diversidad de Shannon-Wiener de la comunidad Fitoplanctónica
Recommended publications
  • Acidophilic Green Algal Genome Provides Insights Into Adaptation to an Acidic Environment
    Acidophilic green algal genome provides insights into adaptation to an acidic environment Shunsuke Hirookaa,b,1, Yuu Hirosec, Yu Kanesakib,d, Sumio Higuchie, Takayuki Fujiwaraa,b,f, Ryo Onumaa, Atsuko Eraa,b, Ryudo Ohbayashia, Akihiro Uzukaa,f, Hisayoshi Nozakig, Hirofumi Yoshikawab,h, and Shin-ya Miyagishimaa,b,f,1 aDepartment of Cell Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan; bCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; cDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580, Japan; dNODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan; eResearch Group for Aquatic Plants Restoration in Lake Nojiri, Nojiriko Museum, Nagano 389-1303, Japan; fDepartment of Genetics, Graduate University for Advanced Studies, Shizuoka 411-8540, Japan; gDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; and hDepartment of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan Edited by Krishna K. Niyogi, Howard Hughes Medical Institute, University of California, Berkeley, CA, and approved August 16, 2017 (received for review April 28, 2017) Some microalgae are adapted to extremely acidic environments in pumps that biotransform arsenic and archaeal ATPases, which which toxic metals are present at high levels. However, little is known probably contribute to the algal heat tolerance (8). In addition, the about how acidophilic algae evolved from their respective neutrophilic reduction in the number of genes encoding voltage-gated ion ancestors by adapting to particular acidic environments. To gain channels and the expansion of chloride channel and chloride car- insights into this issue, we determined the draft genome sequence rier/channel families in the genome has probably contributed to the of the acidophilic green alga Chlamydomonas eustigma and per- algal acid tolerance (8).
    [Show full text]
  • Caracterização Da Diversidade De Eucariotas Fototróficos Provenientes De Águas Ácidas De Mina
    Universidade do Algarve Faculdade de Ciências e Tecnologia Caracterização da Diversidade de Eucariotas Fototróficos Provenientes de Águas Ácidas de Mina Telma Cristina Teixeira Valente Mestrado em Biologia Molecular e Microbiana Faro 2012 Universidade do Algarve Faculdade de Ciências e Tecnologia Telma Cristina Teixeira Valente (Licenciada em Bioquímica) Mestrado em Biologia Molecular e Microbiana Orientada por: Prof.ª Doutora Margarida P. Reis Prof.ª Doutora Filomena Fonseca CIMA – Laboratório de Ecologia Molecular e Microbiana Faro 2012 After a while you learn the subtle difference between holding a hand and chaining a soul and you learn that love doesn't mean leaning and company doesn't always mean security. And you begin to learn that kisses aren't contracts and presents aren't promises and you begin to accept your defeats with your head up and your eyes ahead with the grace of woman, not the grief of a child and you learn to build all your roads on today because tomorrow's ground is too uncertain for plans and futures have a way of falling down in mid-flight. After a while you learn that even sunshine burns if you get too much so you plant your own garden and decorate your own soul instead of waiting for someone to bring you flowers. And you learn that you really can endure you really are strong you really do have worth and you learn and you learn with every goodbye, you learn... Veronica Shoffstall 1971 Este trabalho é da exclusiva responsabilidade de: ____________________________________ Telma Valente Agradecimentos A realização deste trabalho não teria acontecido sem a boa influência de algumas pessoas que foram fundamentais.
    [Show full text]
  • Survey of Freshwater Algae from Karachi, Pakistan
    Pak. J. Bot., 41(2): 861-870, 2009. SURVEY OF FRESHWATER ALGAE FROM KARACHI, PAKISTAN R. ALIYA1, A. ZARINA2 AND MUSTAFA SHAMEEL1 1Department of Botany, University of Karachi, Karachi-75270, Pakistan 2Department of Botany, Federal Urdu University of Arts, Science & Technology, Gulshan-e-Iqbal Campus, Karachi-75300, Pakistan. Abstract Altogether 214 species of algae belonging to 86 genera of 33 families, 15 orders, 10 classes and 6 phyla were collected from various freshwater habitats in three towns of Karachi City during May 2004 and September 2005. Among various phyla, Cyanophycota was represented by 82 species (38.32%), Volvophycota by 78 species (36.45%), Euglenophycota by 4 species (1.87%), Chrysophycota by 2 species (0.93%), Bacillarophycota by 38 species (17.76%) and Chlorophycota by 10 species (4.67%). Members of the phyla Cyanophycota and Volvophycota were most prevalent (74.8%) and those of Euglenophycota and Chrysophycota poorly represented (2.8%). Introduction Karachi, the largest city of Pakistan is spread over a vast area of 3,530 km2 and includes a variety of ponds, streams, water falls, artificial and natural water reservoirs and two small ephemeral rivers with their branchlets, which inhabit several groups of freshwater algae. Only a few studies have been carried out in the past on different groups of these algae, either from a point of view of their habitats and general occurrence (Parvaiz & Ahmed, 1981; Shameel & Butt, 1984; Aisha & Hasni, 1991; Aisha & Zahid, 1991; Leghari et al., 2002) or from taxonomic viewpoint (Salim, 1954; Aizaz & Farooqui, 1972; Farzana & Nizamuddin, 1979; Ahmed et al., 1983). Recently, a study was made on the occurrence of algae within Karachi University Campus (Mehwish & Aliya, 2005).
    [Show full text]
  • Coccomyxa Parasitica Sp. Nov. (Coccomyxaceae, Chlorococcales), a Parasite of Giant Scallops in Newfoundland
    British Phycological Journal ISSN: 0007-1617 (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tejp19 Coccomyxa parasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfoundland Robert N. Stevenson & G. Robin South To cite this article: Robert N. Stevenson & G. Robin South (1974) Coccomyxaparasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfoundland, British Phycological Journal, 9:3, 319-329, DOI: 10.1080/00071617400650391 To link to this article: https://doi.org/10.1080/00071617400650391 Published online: 17 Feb 2007. Submit your article to this journal Article views: 218 Citing articles: 12 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Br. phycol. J. 9:319-329 11 September 1974 COCCOMYXA PARASITICA SP. NOV. (COCCO- MYXACEAE, CHLOROCOCCALES), A PARASITE OF GIANT SCALLOPS IN NEWFOUNDLAND By ROBERT N. STEVENSONand G. ROBIN SOUTH Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland, Canada Coccomyxa parasitica sp. nov. (Coccomyxaceae; Chlorococcales) is described as a parasite of the marine giant scallop, Placopecten magellanicus Gmelin, from Newfoundland, Canada. Cells occur in colonies distributed through various host organs, but especially in the mantle fold. Cell morphology is highly variable, although characterised by the possession of a distinct hyaline tip which is reduced or absent in culture. Pyrenoids are lacking, 1-3 parietal chloroplasts occur and the cell wall lacks cellulose. Reproduction is by 2, 4 or 8 autospores in the host, and by 2, 4, 8 or 16 autospores in culture. Sexual reproduction is lacking. Pigment analysis reveals the predominance of chlorophyll a, with chlorophyll b, ~- and E%carotene and neoxanthin also present.
    [Show full text]
  • Illuminating Our World: an Essay on the Unraveling of the Species Problem, with Assistance from a Barnacle and a Goose
    Humanities 2012, 1, 145–165; doi:10.3390/h1030145 OPEN ACCESS humanities ISSN 2076-0787 www.mdpi.com/journal/humanities Article Illuminating our World: An Essay on the Unraveling of the Species Problem, with Assistance from a Barnacle and a Goose John Buckeridge * and Rob Watts Earth & Oceanic Systems Group, RMIT University, Melbourne, GPO Box 2476, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-399-252-009. Received: 18 July 2012; in revised form: 27 September 2012 / Accepted: 8 October 2012 / Published: 15 October 2012 Abstract: In order to plan for the future, we must understand the past. This paper investigates the manner in which both naturalists and the wider community view one of the most intriguing of all questions: what makes a species special? Consideration is given to the essentialist view—a rigid perspective and ancient, Aristotelian perspective—that all organisms are fixed in form and nature. In the middle of the 19th century, Charles Darwin changed this by showing that species are indeed mutable, even humans. Advances in genetics have reinforced the unbroken continuum between taxa, a feature long understood by palaeontologists; but irrespective of this, we have persisted in utilizing the ‗species concept‘—a mechanism employed primarily to understand and to manipulate the world around us. The vehicles used to illustrate this journey in perception are the barnacle goose (a bird), and the goose barnacle (a crustacean). The journey of these two has been entwined since antiquity—in folklore, religion, diet and even science. Keywords: species concept; organic evolution; history of biology; goose barnacles; barnacle geese; Aristotle; Charles Darwin; Linnaeus 1.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • 7 Systematics of the Green Algae
    7989_C007.fm Page 123 Monday, June 25, 2007 8:57 PM Systematics of the green 7 algae: conflict of classic and modern approaches Thomas Pröschold and Frederik Leliaert CONTENTS Introduction ....................................................................................................................................124 How are green algae classified? ........................................................................................125 The morphological concept ...............................................................................................125 The ultrastructural concept ................................................................................................125 The molecular concept (phylogenetic concept).................................................................131 Classic versus modern approaches: problems with identification of species and genera.....................................................................................................................134 Taxonomic revision of genera and species using polyphasic approaches....................................139 Polyphasic approaches used for characterization of the genera Oogamochlamys and Lobochlamys....................................................................................140 Delimiting phylogenetic species by a multi-gene approach in Micromonas and Halimeda .....................................................................................................................143 Conclusions ....................................................................................................................................144
    [Show full text]
  • New Chlorococcales Species in the Danube Hybrid Algae?
    Acta Biologica Szeged. 25 (3—4), pp. 7—12 (1979) NEW CHLOROCOCCALES SPECIES IN THE DANUBE HYBRID ALGAE? T. HORTOBÁGYI Department of Botany, University Gödöllő (Received February 18, 1979) Abstract Three new Chlorococcales species, observed by the author in the Budapest reaches of the Danube, are reported on: Actinastrum mixtum HORTOB. n. sp., Micractinium extremum HORTOB. n. sp., Tetrastrum nonsens HORTOB. n. sp. The supposition of hybrid character is justified by the appearance of all the three organisms. The coenobia of Actinastrum mixtum HORTOB. are built of cells of two types. One of the cell types agrees with the cells of Actinastrum gracillimum G. N. SMITH, the other with those of Ac- tinastrum aciculare PLAYF. Micractinium extremum HORTOB. combines the characteristics of Micractinium pusillum FRES. and of Micractinium crassisetum HORTOB. On the cells of Tetrastrum nonsens Hortob. the characteristics of Tetrastrum parallelum Hortob. and of Tetrastrum staurogeniaeforme (Schroed.) Lemm. can be observed. Although the most characteristic way of the reproduction of Chlorococcales is the autospore- sormation, zoogamy also occurs in some genera. And by this the possibility of hybridization is fupported. Hereinafter, the description of three new species is published, in respect of whose origin the question may come up, if they aren't hybrid descendants. Actinastrum mixtum HORTOB. n.sp. (Figs. 1-5) In the reaches of the Danube at Budapest, on 28 August, 1974, at river kms 1586 and 1608, as well as on 16 September, 1975 at river km 1643, it did not belong to the rare algae. In August, the temperature of water was 20.8 °C, pH 7.85; in September, water temperature was 16.5 °C, pH 7.96.
    [Show full text]
  • Genus Richness of Microalgae and Cyanobacteria in Biological Soil Crusts from Svalbard and Livingston Island: Morphological Versus Molecular Approaches
    Polar Biology https://doi.org/10.1007/s00300-018-2252-2 ORIGINAL PAPER Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches Martin Rippin1 · Nadine Borchhardt2 · Laura Williams3 · Claudia Colesie4 · Patrick Jung3 · Burkhard Büdel3 · Ulf Karsten2 · Burkhard Becker1 Received: 20 September 2017 / Revised: 18 December 2017 / Accepted: 2 January 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Biological soil crusts (BSCs) are key components of polar ecosystems. These complex communities are important for ter- restrial polar habitats as they include major primary producers that fx nitrogen, prevent soil erosion and can be regarded as indicators for climate change. To study the genus richness of microalgae and Cyanobacteria in BSCs, two diferent meth- odologies were employed and the outcomes were compared: morphological identifcation using light microscopy and the annotation of ribosomal sequences taken from metatranscriptomes. The analyzed samples were collected from Ny-Ålesund, Svalbard, Norway, and the Juan Carlos I Antarctic Base, Livingston Island, Antarctica. This study focused on the follow- ing taxonomic groups: Klebsormidiophyceae, Chlorophyceae, Trebouxiophyceae, Xanthophyceae and Cyanobacteria. In total, combining both approaches, 143 and 103 genera were identifed in the Arctic and Antarctic samples, respectively. Furthermore, both techniques concordantly determined 15 taxa in the Arctic and 7 taxa in the Antarctic BSC. In general, the molecular analysis indicated a higher microalgal and cyanobacterial genus richness (about 11 times higher) than the morphological approach. In terms of eukaryotic algae, the two sampling sites displayed comparable genus counts while the cyanobacterial genus richness was much higher in the BSC from Ny-Ålesund.
    [Show full text]
  • Cattle Access Affects Periphyton Community Structure in Tennessee Farm Ponds
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2010 Cattle access affects periphyton community structure in Tennessee farm ponds. Robert Gerald Middleton University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Middleton, Robert Gerald, "Cattle access affects periphyton community structure in Tennessee farm ponds.. " Master's Thesis, University of Tennessee, 2010. https://trace.tennessee.edu/utk_gradthes/732 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Robert Gerald Middleton entitled "Cattle access affects periphyton community structure in Tennessee farm ponds.." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Wildlife and Fisheries Science. Matthew J. Gray, Major Professor We have read this thesis and recommend its acceptance: S. Marshall Adams, Richard J. Strange Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Robert Gerald Middleton entitled “Cattle access affects periphyton community structure in Tennessee farm ponds.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Wildlife and Fisheries Science.
    [Show full text]
  • As Famílias Chlorococcaceae E Coccomyxaceae No Estado
    SIDNEY FERNANDES As Famílias Chlorococcaceae e Coccomyxaceae no Estado de São Paulo: levantamento florístico Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente do Estado de São Paulo, como parte dos requisitos para a obtenção do título de Doutor em Biodiversidade Vegetal e Meio Ambiente, área de concentração Plantas Avasculares e Fungos em Análises Ambientais. SÃOPAULO 2008 ii SIDNEY FERNANDES As Famílias Chlorococcaceae e Coccomyxaceae no Estado de São Paulo: levantamento florístico Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente do Estado de São Paulo, como parte dos requisitos para a obtenção do título de Doutor em Biodiversidade Vegetal e Meio Ambiente, área de concentração Plantas Avasculares e Fungos em Análises Ambientais. ORIENTADOR: DR. CARLOS EDUARDO DE MATTOS BICUDO iii Ficha catalográfica elaborada pela Seção de Biblioteca do Instituto de Botânica. Fernandes,Sidney F363aAsfamíliasChlorococcaceaeeCoccomyxaceaenoEstadodeSãoPaulo: levantamentoflorístico/SidneyFernandes–SãoPaulo,2008. 158p.il. Tese(Doutorado)–InstitutodeBotânica.SecretariadeEstadodoMeio Ambiente.2008. Bibliografia. 1.Algas.2.Chlorococcaceae.3.Coccomyxaceae.I.Título CDU:582.26 iv Dedico este trabalho à minha família, que não mediu esforços para que esta tese se tornasse realidade. v “Spe salvi facti sumus” (É pela esperança que fomos salvos) SãoPaulo vi Agradecimentos Agradeço a Deus pela oportunidade de conhecer pessoas maravilhosas que me ajudaram muitoem minha formaçãoprofissional comoficólogoe na realizaçãode mais uma empreitada em minhacaminhada. Um agradecimentoespecial aomeuorientador Dr.Carlos Eduardode Mattos Bicudo que abriu as portas da Seção de Ecologia quando eu me encontrava “desorientado” e depositouconfiança em que otrabalhose tornaria realidade.Qualquer palavra escrita nesta teseserá poucodiantedoimensoprazerque tiveemconhecê-loeserseualuno. Aos pesquisadores da Seçãode Ecologia que sempre foram muitosolícitos comigo, em especial Dra.
    [Show full text]