Genus Richness of Microalgae and Cyanobacteria in Biological Soil Crusts from Svalbard and Livingston Island: Morphological Versus Molecular Approaches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Green Algae in Tundra Soils Affected by Coal Mine Pollutions*
Biologia 63/6: 831—835, 2008 Section Botany DOI: 10.2478/s11756-008-0107-y Green algae in tundra soils affected by coal mine pollutions* Elena N. Patova 1 &MarinaF.Dorokhova2 1Institute of Biology, Komi Scientific Centre, Ural Division, Russian Academy of Sciences, Kommunisticheskaya st. 28, 167982, Syktyvkar, Komi Republic, Russia; e-mail: [email protected] 2Moscow State University, Faculty of Geography, Vorobievy Gory GSP-2, 119992, Moscow, Russia; e-mail: doro- [email protected] Abstract: Green algal communities were investigated in clean and pollution-impacted tundra soils around the large coal mine industrial complex of Vorkuta in the E. European Russian tundra. Samples were collected in three zones of open-cast coal mining with different degrees of pollution-impacted soil transformation. A total of 42 species of algae were found in all zones. The species richness decreased from 27 species in undisturbed zones to 19 species in polluted zones. Under open-cast coal mining impacts the community structure simplified, and the dominant algae complexes changed. Algae that are typical for clean soils disappeared from the communities. The total abundance of green algae (counted together with Xanthophyta) ranged between 100–120 × 103 (cells/g dry soils) in undisturbed zones and 0.5–50 × 103 in polluted zones. Soil algae appear to be better indicators of coal mine technogenic pollution than flowering plants and mosses. Key words: green algae; diversity; coal mine impact; soil; north-European Russian tundra Introduction tundra soils around the large industrial coal mine complex of Vorkuta in the north-European Russian tundra (Fig. 1). Soil algae are an important autotrophic component of This region is exposed to heavy air pollution. -
Community Characteristics Analysis of Eukaryotic Microplankton Via ITS Gene Metabarcoding Based on Environmental DNA in Lower Reaches of Qiantang River, China
Open Journal of Animal Sciences, 2021, 11, 105-124 https://www.scirp.org/journal/ojas ISSN Online: 2161-7627 ISSN Print: 2161-7597 Community Characteristics Analysis of Eukaryotic Microplankton via ITS Gene Metabarcoding Based on Environmental DNA in Lower Reaches of Qiantang River, China Aiju Zhang1, Jun Wang1, Yabin Hao1, Shanshi Xiao1, Wei Luo1, Ganxiang Wang2, Zhiming Zhou1 1Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Research Center of East China Sea Fishery Research Institute, Zhejiang Institute of Freshwater Fisheries, Huzhou, China 2Pinghu Fisheries Technology Promotion Center, Pinghu, China How to cite this paper: Zhang, A.J., Wang, Abstract J., Hao, Y.B., Xiao, S.S., Luo, W., Wang, G.X. and Zhou, Z.M. (2021) Community Eukaryotic microplankton plays an important role in water biotic community Characteristics Analysis of Eukaryotic and in maintaining the stability of water ecosystems. Environmental DNA Microplankton via ITS Gene Metabarcod- metabarcoding provides the opportunity to integrate traditional and emerg- ing Based on Environmental DNA in Low- er Reaches of Qiantang River, China. Open ing approaches to discover more new species, and develop molecular biotic Journal of Animal Sciences, 11, 105-124. indices that can be more rapidly, frequently, and robustly used in water qual- https://doi.org/10.4236/ojas.2021.112009 ity assessments. In order to examine assemblages of eukaryotic microplank- ton in lower reaches of Qiantang River, ITS gene metabarcoding technology Received: January 13, 2021 based on environmental DNA was carried out. As a result, various species of Accepted: March 30, 2021 Published: April 2, 2021 phytoplankton, fungi and zooplankton were annotated on. -
Acidophilic Green Algal Genome Provides Insights Into Adaptation to an Acidic Environment
Acidophilic green algal genome provides insights into adaptation to an acidic environment Shunsuke Hirookaa,b,1, Yuu Hirosec, Yu Kanesakib,d, Sumio Higuchie, Takayuki Fujiwaraa,b,f, Ryo Onumaa, Atsuko Eraa,b, Ryudo Ohbayashia, Akihiro Uzukaa,f, Hisayoshi Nozakig, Hirofumi Yoshikawab,h, and Shin-ya Miyagishimaa,b,f,1 aDepartment of Cell Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan; bCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; cDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580, Japan; dNODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan; eResearch Group for Aquatic Plants Restoration in Lake Nojiri, Nojiriko Museum, Nagano 389-1303, Japan; fDepartment of Genetics, Graduate University for Advanced Studies, Shizuoka 411-8540, Japan; gDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; and hDepartment of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan Edited by Krishna K. Niyogi, Howard Hughes Medical Institute, University of California, Berkeley, CA, and approved August 16, 2017 (received for review April 28, 2017) Some microalgae are adapted to extremely acidic environments in pumps that biotransform arsenic and archaeal ATPases, which which toxic metals are present at high levels. However, little is known probably contribute to the algal heat tolerance (8). In addition, the about how acidophilic algae evolved from their respective neutrophilic reduction in the number of genes encoding voltage-gated ion ancestors by adapting to particular acidic environments. To gain channels and the expansion of chloride channel and chloride car- insights into this issue, we determined the draft genome sequence rier/channel families in the genome has probably contributed to the of the acidophilic green alga Chlamydomonas eustigma and per- algal acid tolerance (8). -
The Symbiotic Green Algae, Oophila (Chlamydomonadales
University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2016 The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Schultz University of Connecticut - Storrs, [email protected] Recommended Citation Schultz, Nikolaus, "The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History" (2016). Master's Theses. 1035. https://opencommons.uconn.edu/gs_theses/1035 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. The Symbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Eduard Schultz B.A., Trinity College, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2016 Copyright by Nikolaus Eduard Schultz 2016 ii ACKNOWLEDGEMENTS This thesis was made possible through the guidance, teachings and support of numerous individuals in my life. First and foremost, Louise Lewis deserves recognition for her tremendous efforts in making this work possible. She has performed pioneering work on this algal system and is one of the preeminent phycologists of our time. She has spent hundreds of hours of her time mentoring and teaching me invaluable skills. For this and so much more, I am very appreciative and humbled to have worked with her. Thank you Louise! To my committee members, Kurt Schwenk and David Wagner, thank you for your mentorship and guidance. -
Caracterização Da Diversidade De Eucariotas Fototróficos Provenientes De Águas Ácidas De Mina
Universidade do Algarve Faculdade de Ciências e Tecnologia Caracterização da Diversidade de Eucariotas Fototróficos Provenientes de Águas Ácidas de Mina Telma Cristina Teixeira Valente Mestrado em Biologia Molecular e Microbiana Faro 2012 Universidade do Algarve Faculdade de Ciências e Tecnologia Telma Cristina Teixeira Valente (Licenciada em Bioquímica) Mestrado em Biologia Molecular e Microbiana Orientada por: Prof.ª Doutora Margarida P. Reis Prof.ª Doutora Filomena Fonseca CIMA – Laboratório de Ecologia Molecular e Microbiana Faro 2012 After a while you learn the subtle difference between holding a hand and chaining a soul and you learn that love doesn't mean leaning and company doesn't always mean security. And you begin to learn that kisses aren't contracts and presents aren't promises and you begin to accept your defeats with your head up and your eyes ahead with the grace of woman, not the grief of a child and you learn to build all your roads on today because tomorrow's ground is too uncertain for plans and futures have a way of falling down in mid-flight. After a while you learn that even sunshine burns if you get too much so you plant your own garden and decorate your own soul instead of waiting for someone to bring you flowers. And you learn that you really can endure you really are strong you really do have worth and you learn and you learn with every goodbye, you learn... Veronica Shoffstall 1971 Este trabalho é da exclusiva responsabilidade de: ____________________________________ Telma Valente Agradecimentos A realização deste trabalho não teria acontecido sem a boa influência de algumas pessoas que foram fundamentais. -
Molecular Phylogeny and Taxonomic Revision of Chaetophoralean Algae (Chlorophyta)
University of South Bohemia in České Budějovice Faculty of Science Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta) Ph.D. Thesis Mgr. Lenka Caisová Supervisor RNDr. Jiří Neustupa, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague Formal supervisor Prof. RNDr. Jiří Komárek, DrSc. University of South Bohemia, Faculty of Science, Institute of Botany, Academy of Sciences, Třeboň Consultants Prof. Dr. Michael Melkonian Biozentrum Köln, Botanisches Institut, Universität zu Köln, Germany Mgr. Pavel Škaloud, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague České Budějovice, 2011 Caisová, L. 2011: Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta). PhD. Thesis, composite in English. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic, 110 pp, shortened version 30 pp. Annotation Since the human inclination to estimate and trace natural diversity, usable species definitions as well as taxonomical systems are required. As a consequence, the first proposed classification schemes assigned the filamentous and parenchymatous taxa to the green algal order Chaetophorales sensu Wille. The introduction of ultrastructural and molecular methods provided novel insight into algal evolution and generated taxonomic revisions based on phylogenetic inference. However, until now, the number of molecular phylogenetic studies focusing on the Chaetophorales s.s. is surprisingly low. To enhance knowledge about phylogenetic -
Illuminating Our World: an Essay on the Unraveling of the Species Problem, with Assistance from a Barnacle and a Goose
Humanities 2012, 1, 145–165; doi:10.3390/h1030145 OPEN ACCESS humanities ISSN 2076-0787 www.mdpi.com/journal/humanities Article Illuminating our World: An Essay on the Unraveling of the Species Problem, with Assistance from a Barnacle and a Goose John Buckeridge * and Rob Watts Earth & Oceanic Systems Group, RMIT University, Melbourne, GPO Box 2476, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-399-252-009. Received: 18 July 2012; in revised form: 27 September 2012 / Accepted: 8 October 2012 / Published: 15 October 2012 Abstract: In order to plan for the future, we must understand the past. This paper investigates the manner in which both naturalists and the wider community view one of the most intriguing of all questions: what makes a species special? Consideration is given to the essentialist view—a rigid perspective and ancient, Aristotelian perspective—that all organisms are fixed in form and nature. In the middle of the 19th century, Charles Darwin changed this by showing that species are indeed mutable, even humans. Advances in genetics have reinforced the unbroken continuum between taxa, a feature long understood by palaeontologists; but irrespective of this, we have persisted in utilizing the ‗species concept‘—a mechanism employed primarily to understand and to manipulate the world around us. The vehicles used to illustrate this journey in perception are the barnacle goose (a bird), and the goose barnacle (a crustacean). The journey of these two has been entwined since antiquity—in folklore, religion, diet and even science. Keywords: species concept; organic evolution; history of biology; goose barnacles; barnacle geese; Aristotle; Charles Darwin; Linnaeus 1. -
Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A. -
Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages. -
Universidad Nacional De San Agustin De Arequipa Facultad De Ciencias Biologicas Escuela Profesional De Biologia
UNIVERSIDAD NACIONAL DE SAN AGUSTIN DE AREQUIPA FACULTAD DE CIENCIAS BIOLOGICAS ESCUELA PROFESIONAL DE BIOLOGIA DETERMINACIÓN DE LA RELACIÓN DE LA COMUNIDAD FITOPLANCTÓNICA CON LOS FACTORES FÍSICOS Y QUÍMICOS DEL SECTOR PUNO DE LA RESERVA NACIONAL DEL TITICACA, REGION PUNO, ABRIL – JULIO 2014. TESIS PRESENTADA POR LA BACHILLER: CYNTHIA KAREN ROMERO SANCHEZ PARA OPTAR EL TÍTULO PROFESIONAL DE BIÓLOGA ASESOR: MG. FRANCISCO VILLASANTE BENAVIDES AREQUIPA - PERÚ 2018 i ____________________________________ Asesor: Mg. Francisco Villasante Benavides ii JURADO _____________________________ Dr. Antonio Lazarte Rivera PRESIDENTE _____________________________ Mg. César Ranilla Falcón SECRETARIO _____________________________ Mg. Francisco Villasante Benavies INTEGRANTE iii DEDICATORIA. Dedico el presente trabajo de investigación a mi madre por ser una mujer admirable, mi ejemplo, mi guía, y porque a pesar de los momentos difíciles siempre ha estado apoyándome brindándome todo su amor, y con todo su sacrificio me ha dado una profesión, todo lo que soy es gracias a ella…te amo mamá. iv AGRADECIMIENTOS Agradezco a Dios ser maravilloso que me dio fuerza y fe para creer, crecer y seguir adelante; Al jefe y personal de la Reserva Nacional del Titicaca; al Blgo. Marcos Samuel Ríos Morales, por su apoyo incondicional durante los muestreos, al Mg. César Ranilla Falcón, por el asesoramiento en la determinación de especies de fitoplancton; a mí amigo Ursulo Yapo Pari, por su colaboración en la edición y preparación de imágenes. Y un agradecimiento especial a mi amigo, compañero, hermano Alex Paúl Dueñas Gonza, por el asesoramiento estadístico y porque en todo momento difícil me ha apoyado y me ha motivado a seguir adelante. v INDICE GENERAL CAPÍTULO I ______________________________________________________ 1 MARCO TEÓRICO _________________________________________________ 1 1.1. -
A Preliminary Survey of the Diversity of Soil Algae And'cyanoprokaryotes'on
Venter, et al. 2015. Published in Australian Journal of Botany. 63:341-352. A preliminary survey of the diversity of soil algae and cyanoprokaryotes on mafic and ultramafic substrates in South Africa , , Arthurita Venter A C, Anatoliy Levanets A, Stefan Siebert A and Nishanta RajakarunaA B AUnit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa. BCollege of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, USA. CCorresponding author. Email: [email protected] Abstract. Despite a large body of work on the serpentine-substrate effect on vascular plants, little work has been undertaken to describe algal communities found on serpentine soils derived from peridotite and other ultramafic rocks. We report a preliminary study describing the occurrence of algae and cyanoprokaryotes on mafic and ultramafic substrates from South Africa. Results suggest that slope and aspect play a key role in species diversity and community composition and, although low pH, nutrients and metal content do not reduce species richness, these edaphic features also influence species composition. Further, typical soil genera such as Leptolyngbya, Microcoleus, Phormidium, Chlamydomonas, Chlorococcum and Hantzschia were found at most sites. Chroococcus sp., Scytonema ocellatum, Nostoc linckia, Chlorotetraedron sp., Hormotilopsis gelatinosa, Klebsormidium flaccidium, Pleurococcus sp. and Tetracystis elliptica were unique to one serpentine site. The preliminary survey provides directions for future research on the serpentine- substrate effect on algal and cyanoprokaryote diversity in South Africa. Additional keywords: algae, cryptogamic ecology, serpentine geoecology, species diversity. Introduction species (Siebert et al. 2002;O’Dell and Rajakaruna 2011) and A range of soils can develop from ultramafic rocks depending on are model settings for the study of plant ecology and evolution climate, time, relief, chemical composition of the parent materials (Harrison and Rajakaruna 2011). -
Research Article
Ecologica Montenegrina 20: 24-39 (2019) This journal is available online at: www.biotaxa.org/em Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro EKATERINA V. KOZLOVA1*, SVETLANA E. MAZINA1,2 & VLADIMIR PEŠIĆ3 1 Department of Ecological Monitoring and Forecasting, Ecological Faculty of Peoples’ Friendship University of Russia, 115093 Moscow, 8-5 Podolskoye shosse, Ecological Faculty, PFUR, Russia 2 Department of Radiochemistry, Chemistry Faculty of Lomonosov Moscow State University 119991, 1-3 Leninskiye Gory, GSP-1, MSU, Moscow, Russia 3 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro *Corresponding autor: [email protected] Received 4 January 2019 │ Accepted by V. Pešić: 9 February 2019 │ Published online 10 February 2019. Abstract The biodiversity of the entrance zones of the Montenegro caves is barely studied, therefore the purpose of this study was to assess the biodiversity of several caves in Montenegro. The samples of phototrophs were taken from various substrates of the entrance zone of 7 caves in July 2017. A total of 87 species of phototrophs were identified, including 64 species of algae and Cyanobacteria, and 21 species of Bryophyta. Comparison of biodiversity was carried out using Jacquard and Shorygin indices. The prevalence of cyanobacteria in the algal flora and the dominance of green algae were revealed. The composition of the phototrophic communities was influenced mainly by the morphology of the entrance zones, not by the spatial proximity of the studied caves. Key words: karst caves, entrance zone, ecotone, algae, cyanobacteria, bryophyte, Montenegro. Introduction The subterranean karst forms represent habitats that considered more climatically stable than the surface.