University of Michigan University Library
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1.1 První Chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV GEOLOGICKÝCH VĚD Jakub Březina Rešerše k bakalářské práci Využití mikrostruktur klů neogenních chobotnatců na příkladu rodu Zygolophodon Vedoucí práce: doc. Mgr. Martin Ivanov, Dr. Brno 2012 OBSAH 1. Současný pohled na evoluci chobotnatců 3 1.1 První chobotnatci 5 1.2 Plesielephantiformes 5 1.3 Elephantiformes 6 1.3.1 Mammutida 6 1.3.2 Elephantida 7 1.3.3 Elephantoidea 7 2. Kly chobotnatců a jejich mikrostruktura 9 2.1 Přírůstky v klech chobotnatců 11 2.1.1 Využití přírůstků v klech chobotnatců 11 2.2 Schregerův vzor 12 2.2.1 Stavba Schregerova vzoru 12 2.2.2 Využití Schregerova vzoru 12 2.3 Dentinové kanálky 15 3 Sedimenty s nálezy savců v okolí Mikulova 16 3.1 Baden 17 3.2 Pannon a Pont 18 1. Současný pohled na evoluci chobotnatců Současná systematika chobotnatců není kompletně odvozena od jejich fylogeneze, rekonstruované pomocí kladistických metod. Diskutované skupiny tak mnohdy nepředstavují monofyletické skupiny. Přestože jsou taxonomické kategorie matoucí (např. Laurin 2005), jsem do jisté míry nucen je používat. Některým skupinám úrovně stále přiřazeny nebyly a zde této skutečnosti není přisuzován žádný význam. V této rešerši jsem se zaměřil hlavně na poznatky, které následovaly po vydání knihy; The Proboscidea: Evolution and Paleoecology of Elephants and Their Relatives, od Shoshaniho a Tassyho (1996). Chobotnatci jsou součástí skupiny Tethytheria společně s anthracobunidy, sirénami a desmostylidy (Shoshani 1998; Shoshani & Tassy 1996; 2005; Gheerbrant & Tassy 2009). Základní klasifikace sestává ze dvou skupin. Ze skupiny Plesielephantiformes, do které patří čeledě Numidotheriidae, Barytheriidae a Deinotheridae a ze skupiny Elephantiformes, do které patří čeledě Palaeomastodontidae, Phiomiidae, Mammutida, Gomphotheriidae, tetralofodontní gomfotéria, Stegodontidae a Elephantidae (Shoshani & Marchant 2001; Shoshani & Tassy 2005; Gheerbrant & Tassy 2009). -
A NEW AMEBELODONT, TORYNOBELODON BARNUMBROWNI, SP. NOV. a PRELIMINARY REPORT Erwin Hinckley Barbour
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Bulletin of the University of Nebraska State Museum, University of Nebraska State Museum 1931 A NEW AMEBELODONT, TORYNOBELODON BARNUMBROWNI, SP. NOV. A PRELIMINARY REPORT Erwin Hinckley Barbour Follow this and additional works at: http://digitalcommons.unl.edu/museumbulletin Part of the Entomology Commons, Geology Commons, Geomorphology Commons, Other Ecology and Evolutionary Biology Commons, Paleobiology Commons, Paleontology Commons, and the Sedimentology Commons This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Bulletin of the University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 1/ 6 . BULLETIN 22 VOLUME I UN 1~l:7Gtrs;:J:~~!1 L'P' i THE NEBRASKA STATE USEUM I tor ERWIN H. BARBOUR, Dir NUl :~,~I r ~;l A NEW AMEBELODONT, TOR :I.,I,lI..LJ.J;I.c.uUJ.J~m.T-~ ___I BARNUMBROWNI, SP. NOV. A PRELIMINARY REPORT By ERWIN HINCKLEY BARBOUR The subfamily of longirostrine mastodonts known as the Amebelodontinae have been so recently discovered and described that as yet theY; are little known by the citizens of this state. They are most briefly and directly described as shovel-tusked mastodons. The first one found, namely Amebelodon fricki, was secured in April 1927, and was pub lished June 1927. In the meantime, many other examples of Amebelodonts have been added to the Morrill Palaeon tological Collections of the Nebraska State Museum. The exact number cannot be stated until the material shipped in from the field during the current season is unpacked, cleaned, and identified. -
Early and Middle Pleistocene Faunal and Hominins Dispersals Through Southwestern Asia
Early and Middle Pleistocene Faunal and Hominins Dispersals through Southwestern Asia The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bar-Yosef, Ofer and Miriam Belmaker. Forthcoming. Early and Middle Pleistocene faunal and hominins dispersals through Southwestern Asia. Quaternary Science Reviews 29. Published Version doi:10.1016/j.quascirev.2010.02.016 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4270472 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP 1 Early and Middle Pleistocene Faunal and Hominins Dispersals through 2 Southwestern Asia 3 4 5 Ofer Bar-Yosef and Miriam Belmaker 6 Department of Anthropology 7 Harvard University 8 11 Divinity Avenue 9 Cambridge MA 02138 10 Phone ++ 1 617 495 1279 11 Fax ++ 1 617 496 8041 12 1 12 Abstract 13 This review summarizes the paleoecology of the Early and Middle Pleistocene of 14 southwestern Asia, based on both flora and fauna, retrieved from a series of ‘windows’ 15 provided by the excavated sites. The incomplete chrono-stratigraphy of this vast region 16 does not allow to accept the direct chronological correlation between the available sites 17 and events of faunal and hominin dispersals from Africa. It also demonstrates that 18 hominins survived in a mixed landscape of open parkland with forested surrounding hills. 19 In addition, the prevailing environmental conditions are not sufficient to explain the 20 differences between ‘core and flake’ and the Acheulian industries that probably reflect 21 the learned traditions of different groups of hominins successful adaptations to new 22 ecological niches away from the African savanna. -
Paleobiogeography of Trilophodont Gomphotheres (Mammalia: Proboscidea)
Revista Mexicana deTrilophodont Ciencias Geológicas, gomphotheres. v. 28, Anúm. reconstruction 2, 2011, p. applying235-244 DIVA (Dispersion-Vicariance Analysis) 235 Paleobiogeography of trilophodont gomphotheres (Mammalia: Proboscidea). A reconstruction applying DIVA (Dispersion-Vicariance Analysis) María Teresa Alberdi1,*, José Luis Prado2, Edgardo Ortiz-Jaureguizar3, Paula Posadas3, and Mariano Donato1 1 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, España. 2 INCUAPA, Departamento de Arqueología, Universidad Nacional del Centro, Del Valle 5737, B7400JWI Olavarría, Argentina. 3 LASBE, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/Nº, B1900FWA La Plata, Argentina. * [email protected] ABSTRACT The objective of our paper was to analyze the distributional patterns of trilophodont gomphotheres, applying an event-based biogeographic method. We have attempted to interpret the biogeographical history of trilophodont gomphotheres in the context of the geological evolution of the continents they inhabited during the Cenozoic. To reconstruct this biogeographic history we used DIVA 1.1. This application resulted in an exact solution requiring three vicariant events, and 15 dispersal events, most of them (i.e., 14) occurring at terminal taxa. The single dispersal event at an internal node affected the common ancestor to Sinomastodon plus the clade Cuvieronius – Stegomastodon. A vicariant event took place which resulted in two isolated groups: (1) Amebelodontinae (Africa – Europe – Asia) and (2) Gomphotheriinae (North America). The Amebelodontinae clade was split by a second vicariant event into Archaeobelodon (Africa and Europe), and the ancestors of the remaining genera of the clade (Asia). In contrast, the Gomphotheriinae clade evolved mainly in North America. -
Manus Descriptions of an Undescribed Mastodon from the Latest Miocene-Earliest Pliocene Gray Fossil Site, with Comparisons to Other North American Proboscidean Taxa
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 12-2019 Manus Descriptions of an Undescribed Mastodon from the Latest Miocene-Earliest Pliocene Gray Fossil Site, with Comparisons to other North American Proboscidean Taxa Brenna Hart-Farrar East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Geology Commons, and the Paleobiology Commons Recommended Citation Hart-Farrar, Brenna, "Manus Descriptions of an Undescribed Mastodon from the Latest Miocene-Earliest Pliocene Gray Fossil Site, with Comparisons to other North American Proboscidean Taxa" (2019). Electronic Theses and Dissertations. Paper 3680. https://dc.etsu.edu/etd/3680 This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Manus Descriptions of an Undescribed Mastodon from the Latest Miocene-Earliest Pliocene Gray Fossil Site, with Comparisons to other North American Proboscidean Taxa _________________________________ A thesis presented to the faculty of the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences _________________________________ by Brenna J. Hart-Farrar December 2019 _________________________________ Steven C. Wallace, Chair Chris. Widga Blaine W. Schubert Keywords: Gray Fossil Site, Mammut, Mastodon, Morphology, Manus ABSTRACT Manus descriptions of an Undescribed Mastodon from the Latest Miocene-Earliest Pliocene Gray Fossil Site, with Comparisons to other North American Proboscidean Taxa by Brenna J. -
MAY 2011 ART& ANIMALS in THIS ISSUE Sunday with Celebrated at Morrill Hall April 2 a Scientist
NEWS FROM THE UNIVERSITY OF NEBRASKA STATE MUSEUM theMammoth MAY 2011 ART& ANIMALS IN THIS ISSUE Sunday with Celebrated at Morrill Hall April 2 a Scientist The 3rd annual Colorful Creature Day was held April 2 at Morrill Hall. Over 1,100 visitors of all ages came out for this fun-filled afternoon of live animals and hands-on art activities in the Museum. Read more about this event on page 12! Museum Memories ..........................6-8 A Walk Through Time .......................9-11 Colorful Creature Day .......................12 Agate Fossil Beds: New Fossil Find Marks 30 Years of Discovery........... 14-15 Sunday with a Scientist ...................16-17 Trailside Turns 50! ...........................18 & MORE The Mammoth is available in color online! friendsofthemuseum.org MORRILL FRIENDS UNIVERSITY OF BOARD OF DIRECTORS NEBRASKA HALL Mark A. Brohman, President STATE MUSEUM STAFF CALENDAR Lois Mayo, Vice President EX-OFFICIO AT A GLANCE David Rowe, Treasurer Priscilla C. Grew Director: Priscilla C. Grew Diane Pratt, Secretary Mike Madcharo Associate Director: Mark Harris Karen Amen Marcia Hollestelle ADVISORY COUNCIL Informal Science Education: Judy Diamond, Curator June 19 Michael Leite Judy Diamond Amy Spiegel Keely Rennie-Tucker Connie Pejsar 1:30-4:30 p.m. Lynn Sobotka Norm Smith Sunday with a Scientist Education Coordinator: Kathy French Diann Sorensen Mike Zeleny Museum Associates: Ann Cusick “Tissue Mechanics: Mark Sorensen Cindy Loope Engineering Better Heart Mel Thornton ASHFALL CHAPTER Annie Mumgaard Health” Natasha Vavra Mark Brogie, Ina Van der Veen Art Zygielbaum President July 17 Research Partnerships Coordinator: Brett Ratcliffe 1:30-4:30 p.m. Sunday with a Scientist Anthropology: Alan Osborn, Curator CONTACT INFORMATION NAGPRA/Collections Assistant: Susan Curtis “Fish” Director’s Office (402) 472-3779 Nebraska Archaeological Survey: Alan Osborn August 21 Museum Information Line (402) 472-2642 School Program Reservations (402) 472-6302 Botany: Robert Kaul, Curator 1:30-4:30 p.m. -
PROCEEDINGS of the OKLAHOMA ACADEMY of SCIENCE Volume 98 2018
PROCEEDINGS of the OKLAHOMA ACADEMY OF SCIENCE Volume 98 2018 EDITOR: Mostafa Elshahed Production Editor: Tammy Austin Business Manager: T. David Bass The Official Organ of the OKLAHOMA ACADEMY OF SCIENCE Which was established in 1909 for the purpose of stimulating scientific research; to promote fraternal relationships among those engaged in scientific work in Oklahoma; to diffuse among the citizens of the State a knowledge of the various departments of science; and to investigate and make known the material, educational, and other resources of the State. Affiliated with the American Association for the Advancement of Science. Publication Date: January 2019 ii POLICIES OF THE PROCEEDINGS The Proceedings of the Oklahoma Academy of Science contains papers on topics of interest to scientists. The goal is to publish clear communications of scientific findings and of matters of general concern for scientists in Oklahoma, and to serve as a creative outlet for other scientific contributions by scientists. ©2018 Oklahoma Academy of Science The Proceedings of the Oklahoma Academy Base and/or other appropriate repository. of Science contains reports that describe the Information necessary for retrieval of the results of original scientific investigation data from the repository will be specified in (including social science). Papers are received a reference in the paper. with the understanding that they have not been published previously or submitted for 4. Manuscripts that report research involving publication elsewhere. The papers should be human subjects or the use of materials of significant scientific quality, intelligible to a from human organs must be supported by broad scientific audience, and should represent a copy of the document authorizing the research conducted in accordance with accepted research and signed by the appropriate procedures and scientific ethics (proper subject official(s) of the institution where the work treatment and honesty). -
A Mammalian Lost World in Southwest Europe During the Late Pliocene
A Mammalian Lost World in Southwest Europe during the Late Pliocene Alfonso Arribas1*, Guiomar Garrido1,Ce´sar Viseras2, Jesu´ s M. Soria3, Sila Pla2, Jose´ G. Solano1, Miguel Garce´s4, Elisabet Beamud5, Jose´ S. Carrio´ n6 1 Departamento de Investigacio´n en Recursos Geolo´gicos, Instituto Geolo´gico y Minero de Espan˜a, Madrid, Spain, 2 Departamento de Estratigrafı´a y Paleontologı´a, Facultad de Ciencias, Universidad de Granada, Granada, Spain, 3 Departamento de Ciencias de la Tierra y del Medio Ambiente, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain, 4 Departamento de Estratigrafı´a, Paleontologı´a y Geociencias Marinas, Facultad de Geologı´a, Universidad de Barcelona, Barcelona, Spain, 5 Paleomagnetic Laboratory (UB-CSIC) Institute of Earth Sciences, Jaume Almera, Barcelona, Spain, 6 Departamento de Biologı´a Vegetal, Facultad de Biologı´a, Universidad de Murcia, Murcia, Spain Abstract Background: Over the last decades, there has been an increasing interest on the chronology, distribution and mammal taxonomy (including hominins) related with the faunal turnovers that took place around the Pliocene-Pleistocene transition [ca. 1.8 mega-annum (Ma)] in Europe. However, these turnovers are not fully understood due to: the precarious nature of the period’s fossil record; the ‘‘non-coexistence’’ in this record of many of the species involved; and the enormous geographical area encompassed. This palaeontological information gap can now be in part bridged with data from the Fonelas P-1 site (Granada, Spain), whose faunal composition and late Upper Pliocene date shed light on some of the problems concerning the timing and geography of the dispersals. Methodology/Principal Findings: This rich fossil site yielded 32 species of mammals, among which autochthonous species of the European Upper Villafranchian coexist with canids (Canis), ovibovines (Praeovibos)andgiraffids(Mitilanotherium) from Asia. -
I.—A Retrospect of Palaeontology in the Last Forty Years
THE GEOLOGICAL MAGAZINE. NEW SERIES. DECADE V. VOL. I. No. IV. —APRIL, 1904. ORIGI3STAL ARTICLES. I.—A KETROSPECT OF PALAEONTOLOGY IN TIIE LAST FOBTY YEABS. (Concluded from the March Number, p. 106.) EEPTILIA ET AVES.—Our two greatest Anatomists of the past century, Owen and Huxley, both contributed to this section of our palseozoological record. Owen (in 1865) described some remains of a small air-breathing vertebrate, Anihrakerpeton crassosteum, from the Coal-shales of Glamorganshire, corresponding with those described by Dawson from the Coal-measures of Nova Scotia ; and in 1870 he noticed some remains of Plesiosaurus Hoodii (Owen) from New Zealand, possibly of Triaasic age. Huxley made us acquainted with an armed Dinosaur from the Chalk-marl of Folkestone, allied to Scelidosaurus (Liassic), ITylao- saurus and Polacanthus (Wealden), the teeth and dermal spines of which he described and figured (1867), and in the following year he figured and determined two new genera of Triassic reptilia, Saurosternon Bainii and Pristerodon McKayi, from the Dicynodont beds of South Africa. E. Etheridge recorded (in 1866) the discovery by Dr. E. P. Wright and Mr. Brownrig of several new genera of Labyrinthodonts in the Coal-shales of Jarrow Colliery, Kilkenny, Ireland, com- municated by Huxley to the Royal Irish Academy, an account of which appeared later on in the GEOLOGICAL MAGAZINE in the same year by Dr. E. P. Wright (p. 165), the genera given being Urocordylus, Ophiderpeton, Ichthyerpeton, Keraterpeton, Lepterpeton, and Anthracosaurus. Besides these genera there were indications of the existence of several others (not described), making at that time a total of thirteen genera from the Carboniferous formation in general. -
Synoptic Taxonomy of Major Fossil Groups
APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida -
Anew Species of Rhinoceros, Aphelops Ki11lbal1e1'ljis, Z from the Latest Pliocene of Nebraska
Lloyd C. Tanner1 ANew Species of Rhinoceros, Aphelops ki11lbal1e1'lJis, Z from the Latest Pliocene of Nebraska INTRODUCTION A study of the specimens referrable to the genus Aphelops that have been recorded from the Tertiary deposits of North America demonstrates that the genus evolved slowly, and the characters which have been used to separate one species from another are diffi cult to discern. The nearly complete skull (U.N.S.M. 5788), a partial mandible (D.N.S.lVP 5789), ramus, and skeletal elements were collected from the lower part of the Kimball Formation, D.N.S.M. ColI. Loc. Ft-40, Frontier County, Nebraska, and constitute the basis of the descrip tion of a new species of Aphelops. These remains indicate that this species of Aphelops is larger tha n any known North American fossil rhinoceros (see Tables 1 and 2), and the new species from uppermost Pliocene deposits may represent the latest recorded occurrence of the genus in Nebraska. In previous studies by Cope (1873, 1878, and 1879), Osborn (1898, 1904), and 'Matthew (1901 , 1918, 1923, and 1932), the follow ing characteristics have been considered specific differences: size and 1 Associate Curator of Vertebrate Paleontology, University of Nebraska State Museum. 'Named after the Kimball Formation, uppermost Pliocene, from which the type material was recovered. " f ollowing is a list of abbreviations of institutions herein cited: A.M.N.H. Am erican Museum of Natural History, New York; C.M.-Carnegie Museum, l'iltSburgh: C.M.N.H.-Colorado Mu seum of Natural History; U.C.-University of California; and U.N.S.M.-University of Nebraska State Museum. -
Proboscideans 1
AAA PALEONTOLOGY: H. F. OSBORN PROC. N. A. S. THE ANCESTRAL TREE OF THE PROBOSCIDEA. DIS- COVER Y, E VOL UTION, MIGRA TION AND EXTINCTION OVER A 50,000,000 YEAR PERIOD' By HENRY FAIRFIELD OSBORN ITE AMERICAN MUSEUM oF NATURAL HISTORY Read before the Academy, Tuesday, April 23, 1935 Beginning in 1900 I have directed a continuous research extending over thirty-four years upon the gross and detailed evolution of two widely con- trasting groups of quadrupeds and for the first time in the history of biology have succeeded in constructing two actual ancestral trees, as follows: Titanothere tree, 15 branches of phyla, Lower Eocene to Lower Oligocene time inclusive-20,000,000 years (see Titanothere Monograph, 1929). Proboscidea tree, 31 branches of phyla, Upper Eocene to Recent time, inclusive- 50,000,000 years (see forthcoming Proboscidea Monograph, 1935-1936). Titanotheres Proboscideans 1. Defense by bony horns, arising as 1. Defense by superior tusks, effective aristogenes at widely different and suc- against all carnivorous enemies. cessive periods of geologic time. 2. Grinding teeth stationary in evolution, 2. Grinding teeth plastic, aristogenes adaptive to a single browsing habit, numerous, with rapid radiation into 31 evolution arrested. Aristogenes extremely independent lines of form, adapted to limited. Extinction sudden due to world the highly diversified flora from the change of flora of the north temperate Equator to the arctic tundras. Aristo- hemisphere. genes exttemely' numerous and varied. Extinction of mastodonts gradual, due to progressive desiccation of the world flora. Extinction of elephants relatively recent. 3. Inferior incisive tusks degenerate and 3. Second pair of inferior incisors in ineffective, disappearing.