A Monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae)

Total Page:16

File Type:pdf, Size:1020Kb

A Monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae) Phytotaxa 300 (1): 001–308 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Monograph ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.300.1.1 PHYTOTAXA 300 A monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae) MICHAEL D. CRISP1, LINDY CAYZER1,2, GREGORY T. CHANDLER1,3 & LYN G. COOK4 1Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia. Email: [email protected] 2Present address: Australian National Herbarium, Centre for Plant Biodiversity Research, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia. Email: [email protected] 3Present address: Department of Agriculture and Water Resources, 1 Pederson Road, Eaton, Northern Territory 0812, Australia. Email: [email protected] 4School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] Magnolia Press Auckland, New Zealand Accepted by James Boatwright: 31 Jan. 2017; published: 24 Mar. 2017 1 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 MICHAEL D. CRISP, LINDY CAYZER, GREGORY T. CHANDLER & LYN G. COOK A monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae) (Phytotaxa 300) 308 pp.; 30 cm. 24 March 2017 ISBN 978-1-77670-108-7 (paperback) ISBN 978-1-77670-109-4 (Online edition) FIRST PUBLISHED IN 2017 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/j/pt/ © 2017 Magnolia Press All rights reserved. ISSN 1179-3155 (Print edition) ISSN 1179-3163 (Online edition) 2 • Phytotaxa 300 (1) © 2017 Magnolia Press CRISP ET AL. Abstract Daviesia is a clade of scleromorphic shrubs that are endemic to Australia and its near offshore islands, where it is the largest genus of Fabaceae subfam. Faboideae, with 131 species recognised here. The genus is distributed throughout the continent and occurs in all major habitats except wetlands, rainforest and the alpine zone. This is the first monograph of the genus published since Bentham’s in 1864, which included only 55 species. New taxa described herein are D. divaricata subsp. lanulosa, D. filipes subsp. terminalis, D. subulata, D. schwarzenegger and D. scabrella. New combinations with a change of rank are D. aphylla, D. decurrens subsp. hamata and D. implexa, while D. devito is raised from subspecies level and given a new epithet. A key to species and subspecies, detailed comparative descriptions, phenology and habitat information, as well as line drawings or photographs, are presented for all species. Conservation status is given for taxa of concern, mostly based on assessments by government agencies. A new molecular phylogenetic analysis using sequences of chloroplast and nuclear ribosomal DNA is presented and used to arrange the species descriptions, where the 13 unsequenced species are interpolated using morphological similarity. Seven strongly supported clades and seven mostly well-supported subclades are named informally for reference in discussion of affinities, but are not formally described because they lack morphological synapomorphies. Introduction Daviesia Smith (1798: 220) is the most diverse genus of pea-flowered legumes in Australia, with ca. 130 known species and 18 non-autonym subspecies. Pultenaea Smith (1794: 35) and Gastrolobium Brown (1811: 16)—in its expanded circumscription, Chandler et al. 2002—are the next most diverse, with ca. 110 species each. Like much of the flora of Australia’s abundant oligotrophic soils (Hooker 1860, Orians & Milewski 2007, Crisp & Cook 2013), Daviesia is characterised by its scleromorphic vegetative parts, which are particularly well developed. The leaves are usually hard and isobilateral, often spinescent and/or cylindrical in section, or vertically compressed, or reduced in size, sometimes to scales. They closely resemble the phyllodes of Acacia Miller (1754: [25]), and are here termed as such, though they likely evolved convergently in these two genera (Crisp & Weston 1987: 100). Three species have flattened, leaf-like cladodes (D. alata, D. epiphyllum and D. pteroclada). The roots of many species are bizarre, having a strange mode of secondary thickening in which successive arc-like cambia arise outside those of the previous season, forming flanges or rope-like structures on the roots (‘cord roots’, Pate et al. 1989). Most have the small yellow and red flowers typical of the tribes Bossiaeeae (Bentham 1865: 440) Hutchinson (1964: 347) and Mirbelieae (Bentham 1837b: 35) Polhill & Crisp (1982: 55), apparently specialised for bee-pollination, but a few (D. cunderdin, D. epiphyllum and D. speciosa) have enlarged, modified red flowers probably pollinated by birds (Crisp 1994, Toon et al. 2014). Species are found throughout the Australian continent and Tasmania but nowhere else, not even in New Guinea; however, more than 70% are restricted to south-west Western Australia. All are found either in eucalypt- dominated communities (sclerophyll forest, woodland or mallee) or in heathland. In south-west Western Australia, the heathlands and mallee-heaths are known by the indigenous name ‘kwongan’ (Pate & Beard 1984). Most are probably ecologically important nitrogen-fixers. Eighteen species have been tested and all were found to engage in symbiotic N2-fixation with bacterial N2-fixing symbionts (nodulation) (Werner et al. 2014a, 2014b). These 18 species are scattered across the phylogenetic breadth of the genus, being found in eight of the 12 non-nested informally named clades (Fig. 1), so nitrogen-fixing nodulation is likely to occur genus-wide. In eastern Australia, a few species in the D. latifolia group (Crisp 1991a) are dominant in forest understorey, especially when fire is reasonably frequent. Many species are restricted endemics and the genus appears informative about the historical biogeography and diversification of floristic regions within the Australian continent (Cook et al. 2015). This monograph is the culmination of a series of papers by us that have progressively revised Daviesia and is the first complete account of the genus since Bentham (1864). When this study commenced in 1975, about 70 named species were recognised (e.g. Polhill 1981), but that number is now nearly doubled, mainly as a result of the discovery of many restricted endemics in south-west Western Australia. We have conducted extensive field work throughout Australia over four decades and have thereby studied and sampled every taxon described herein. Several taxonomic papers and flora treatments have been published to date in this revisionary series (Crisp 1980a, 1980b, 1982a, 1982b, 1984, 1986, 1987a, 1987b, 1990, 1991a, 1981b, 1992, 1995, Chandler & Crisp 1997, Crisp & Chandler 1997, Chandler & Crisp 1998, Crisp 2002). A molecular phylogeny (described in the next section) A MONOGRAPH OF DAVIESIA Phytotaxa 300 (1) © 2017 Magnolia Press • 3 forms the basis of an informal classification under which the descriptions of the species are arranged. There are also a key to all species and subspecies, sources of online geographic distribution maps, discussions of species’ affinities and complete nomenclatural details including typification. A small number of taxa are described as new or changed in status. Phylogeny and Classification Background:—Daviesia was first described by Smith (1798) based on early collections from Port Jackson (New South Wales) by surgeon J. White. Subsequently, Smith (1808a, 1808b) described several species based on White’s specimens, as well as a couple from King George Sound (Western Australia) using collections by Archibald Menzies. Brown (1811) described two new species from cultivation at Kew gardens. Bentham (1837a) made the first major treatment, as part of a revision of legumes of the world. In this and two publications on Australian taxa (Bentham 1837b, 1864), he described more species in the genus than any other author before the late 20th Century. Moreover, his treatment in Flora Australiensis (Bentham 1864) stands as the most comprehensive revision of the genus to date. Over the next 100 years, more species were described by several authors, but there was no comprehensive treatment or revision. Daviesia has always been accepted as a natural (monophyletic) genus with no controversy about its circumscription. It has been diagnosed primarily by the unique triangular, explosively dehiscing pods, and secondarily by the inflorescence and scleromorphic vegetative parts (e.g. Smith 1805, Brown 1811a, Bentham 1837a). (An expanded morphological diagnosis of the genus is given just before the key to species below.) One or two species have been transferred into or out of the genus, e.g. D. abnormis was previously included in Latrobea Meisner (1848: 219), but these have been the result of errors rather than doubt about the definition of the genus. Monophyly of Daviesia has been supported strongly by phylogenetic analysis. A cladistic parsimony analysis using morphological characters scored for 55 species in the genus (Pate et al. 1989) included three closely related genera as outgroups, namely Viminaria Smith (1805: 507), Erichsenia Hemsley (1905: t. 2777) and Sphaerolobium Smith (1805: 509). Monophyly of Daviesia was supported by synapomorphies in pod shape, phyllodinous seedling leaves and red deposits in the calyx tissue (the last character is reversed within the genus). However, the test of monophyly was weak because few outgroups were used. Subsequent
Recommended publications
  • Species of the Box-Gum Woodlands and Derived Native Grasslands
    White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland Ecological Community Species List White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland Ecological Community Species List This species list is designed to provide information about plant species that can be found in the White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland ecological community listed under the Environment Protection and Biodiversity Conservation Act 1999. The species list was developed to complement the Listing Information Guide, and should be read in that context. It provides information on scientific and common names of the species, the kind of plant the species is, whether it is an ‘important’ species for the purposes of this ecological community and whether it is exotic or native, perennial or annual. The list is not exhaustive and not all of the species listed will occur in every patch of White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland. If there are any species that you think should be added to the list, removed from the list, or that are categorised incorrectly, please contact [email protected]. As such, this document may change over time and you should check that you are referring to the most recent version of the list. Caveat: This list has been compiled from a range of sources. While reasonable efforts have been made to ensure the accuracy of the information, no guarantee is given, nor responsibility taken, by the Commonwealth for its accuracy, currency or completeness.
    [Show full text]
  • No. 110 MARCH 2002 Price: $5.00
    No. 110 MARCH 2002 Price: $5.00 AUSTRALIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Office Bearers President Vice President Barry Conn W.R.(Bill) Barker Royal Botanic Gardens Sydney Plant Biodiversity Centre Mrs Macquaries Road Hackney Road Sydney NSW 2000 Hackney SA 5069 tel: (02) 9231 8131 tel: (08) 82229303 email: [email protected] email: [email protected] Secretary Treasurer Brendan Lepschi Anthony Whalen Centre for Plant Biodiversity Research Centre for Plant Biodiversity Research Australian National Herbarium Australian National Herbarium GPO Box 1600, Canberra GPO Box 1600, Canberra ACT 2601 ACT 2601 tel: (02) 6246 5167 tel: (02) 6246 5175 email: [email protected] email: [email protected] Councillor Councillor Andrew Rozefelds R.O.(Bob) Makinson Tasmanian Herbarium Royal Botanic Gardens Sydney GPO Box 252-40 Mrs Macquaries Road Hobart, Tasmania 7001 Sydney NSW 2000 tel.: (03) 6226 2635 tel: (02) 9231 8111 email: [email protected] email: [email protected] Public Officer Annette Wilson Australian Biological Resources Study Environment Australia GPO Box 787 CANBERRA ACT 2601 tel: (02) 6250 9417 email: [email protected] Affiliate Society Papua New Guinea Botanical Society ASBS Web site http://www.anbg.gov.au/asbs Publication dates of previous issue Austral.Syst.Bot.Soc.Nsltr 109 (December 2001 issue) Hardcopy: 15th Jan 2002; ASBS Web site: 15th Jan 2002 Australian Systematic Botany Society Newsletter 110 (March 2002) ASBS Inc. Business Council elections with at the Annual General Meeting, which is more than four months after lodgement as A slip for nominations to the next Council is required by the Rules.
    [Show full text]
  • Variation of Physical Seed Dormancy and Its Ecological Role in Fire-Prone Ecosystems
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2016 Variation of physical seed dormancy and its ecological role in fire-prone ecosystems Ganesha Sanjeewani Liyanage Borala Liyanage University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Borala Liyanage, Ganesha Sanjeewani Liyanage, Variation of physical seed dormancy and its ecological role in fire-prone ecosystems, Doctor of Philosophy thesis, School of Biological Sciences, University of Wollongong, 2016.
    [Show full text]
  • Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
    AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Gompholobium Ecostatum Kuchel, Suppl
    GompholobiumListing Statement for Gomphlobium ecostatum ecostatum (dwarf wedgepea) dwarf wedgepea T A S M A N I A N T H R E A T E N E D S P E C I E S L I S T I N G S T A T E M E N T Image by Greg Jordan Scientific name: Gompholobium ecostatum Kuchel, Suppl. Black's Fl. S. Austral.: 182 (1965) Common Name: dwarf wedgepea (Wapstra et al. 2005) Group: vascular plant, dicotyledon, family Fabaceae Status: Threatened Species Protection Act 1995: endangered Environment Protection and Biodiversity Conservation Act 1999: Not listed Distribution: Endemic status: not endemic to Tasmania Tasmanian NRM Region: North Figure 1. Distribution of Gompholobium ecostatum in Plate 1. Flower of Gompholobium ecostatum Tasmania, showing Natural Resource Management (image by Natalie Tapson) regions 1 Threatened Species and Marine Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Gomphlobium ecostatum (dwarf wedgepea) SUMMARY: Gompholobium ecostatum (dwarf structures) inserted midway along the pedicels. wedgepea) is a low spreading shrub that occurs The flowers are 15 to 20 mm long and are deep in heathland and heathy eucalypt woodland on apricot to reddish with a yellow centre and sandy and gravelly soils. In Tasmania, it occurs black outer surfaces. The calyx (outermost at several locations in central Flinders Island, whorl of floral parts) is about 8 mm long, black, where it has a highly restricted distribution glabrous outside and with tomentose inside occurring within a linear range of less than margins. The keel (lower petal) is usually 20 km and likely to occupy less than 10 ha, and minutely ciliate along the edges.
    [Show full text]
  • Daviesia Physodes LC Taxonomic Authority: A.Cunn
    Daviesia physodes LC Taxonomic Authority: A.Cunn. ex G.Don Global Assessment Regional Assessment Region: Global Endemic to region Synonyms Common Names PRICKLY BITTER PEA English Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: General Information Distribution Daviesia physodes is endemic to Australia, distributed in the state of Western Australia. Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 380 Afrotropical Extent of Occurrence: Lower limit: Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population Total population size and dynamics are not known, but a recent survey in 2005 suggests 100 plants from a population in Western Australia (MSBP 2010) growing in dense low heath. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology This large shrub grows on sandy soils over laterite or limestone in plains, hills and winter-wet flats of Western Australia. It grows in woodlands, shrublands or heath. System Movement pattern Crop Wild Relative Terrestrial Freshwater Nomadic Congregatory/Dispersive Is the species a wild relative of a crop? Marine Migratory Altitudinally migrant Growth From Definition Shrub - large Perennial shrub (>1m), also termed a Phanerophyte (>1m) Threats This species is susceptible to Phytophthora cinnamomi, the jarrah dieback pathogen (Groves et al. 2009). This is a serious threat to the forest areas which caused the death of thousands of hectares of forest in this area (Boden and Given 1995). It is recommended that D.
    [Show full text]
  • Eutaxia Microphylla Common Eutaxia Dillwynia Hispida Red Parrot-Pea Peas FABACEAE: FABOIDEAE Peas FABACEAE: FABOIDEAE LEGUMINOSAE LEGUMINOSAE
    TABLE OF CONTENTS Foreword iv printng informaton Acknowledgements vi Introducton 2 Using the Book 3 Scope 4 Focus Area Reserve Locatons 5 Ground Dwellers 7 Creepers And Twiners 129 Small Shrubs 143 Medium Shrubs 179 Large Shrubs 218 Trees 238 Water Lovers 257 Grasses 273 Appendix A 290 Appendix B 293 Resources 300 Glossary 301 Index 303 ii iii Ground Dwellers Ground dwellers usually have a non-woody stem with most of the plant at ground level They sometmes have a die back period over summer or are annuals They are usually less than 1 metre high, provide habitat and play an important role in preventng soil erosion Goodenia blackiana, Kennedia prostrata, Glossodia major, Scaevola albida, Arthropodium strictum, Gonocarpus tetragynus Caesia calliantha 4 5 Bulbine bulbosa Bulbine-lily Tricoryne elator Yellow Rush-lily Asphodel Family ASPHODELACEAE Day Lily Family HEMEROCALLIDACEAE LILIACEAE LILIACEAE bul-BINE (bul-BEE-nee) bul-bohs-uh Meaning: Bulbine – bulb, bulbosa – bulbous triek-uhr-IEN-ee ee-LAHT-ee-or Meaning: Tricoryne – three, club shaped, elator – taller General descripton A small perennial lily with smooth bright-green leaves and General descripton Ofen inconspicuous, this erect branched plant has fne, yellow fowers wiry stems and bears small clusters of yellow star-like fowers at the tps Some Specifc features Plants regenerate annually from a tuber to form a tall longish leaves present at the base of the plant and up the stem stem from a base of feshy bright-green Specifc features Six petaled fowers are usually more than 1 cm across,
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Species Summary
    Gastrolobium spinosum LC Taxonomic Authority: Benth. Global Assessment Regional Assessment Region: Global Endemic to region Synonyms Common Names PRICKLY POISON English (Primary) Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: This is an extremely variable species, in both leaf shape and size. It resembles Gastrolobium aculeatum, G. euryphyllum, G. triangulare, G. trilobum and G. wonganensis. There are several known varieties. General Information Distribution Gastrolobium spinosum is endemic to Australia, distributed in the state of Western Australia. Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 520 Afrotropical Extent of Occurrence: Lower limit: Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population Total population size is not known but it was recently collected in 2008. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology This prickly bushy to erect shrub grows in a wide range of habitats, from sand plains to mountain escarpment, on sandy soils to clay-loam soils in forest, woodland, malee and heathland. It is pollinated by insects and it is higly toxic to stock (Chandler et al. 2002). Mostly found in small colonies a little inland on heavier soils particularly with a rocky substrate, but usually within the agricultural zone (Archer 2009). System Movement pattern Crop Wild Relative Terrestrial Freshwater Nomadic Congregatory/Dispersive Is the species a wild relative of a crop? Marine Migratory Altitudinally migrant Growth From Definition Shrub - large Perennial shrub (>1m), also termed a Phanerophyte (>1m) Threats There are no major threats known to this species.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • Combined Phylogenetic Analyses Reveal Interfamilial Relationships and Patterns of floral Evolution in the Eudicot Order Fabales
    Cladistics Cladistics 1 (2012) 1–29 10.1111/j.1096-0031.2012.00392.x Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales M. Ange´ lica Belloa,b,c,*, Paula J. Rudallb and Julie A. Hawkinsa aSchool of Biological Sciences, Lyle Tower, the University of Reading, Reading, Berkshire RG6 6BX, UK; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; cReal Jardı´n Bota´nico-CSIC, Plaza de Murillo 2, CP 28014 Madrid, Spain Accepted 5 January 2012 Abstract Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Suri- anaceae)) as the presence of free filaments and marginal ⁄ ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.
    [Show full text]