Adaptation of Magnetic Bubble Memory in a Standard Microcomputer Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer Problem Solving 1) What Is the First 640K of Memory Addresses Called?
Computer Problem Solving 1) What is the first 640k of memory addresses called? a. extended memory b. upper memory c. high memory d. conventional memory Competency: Personal computer components 2) What was the first socket to support dual voltage inputs? a. Socket 7 b. Socket 5 c. Socket 8 d. Socket 423 Competency: Personal computer components 3) Which card is used to add modems and network cards to the portable computer? a. Type 1 b. Type 2 c. Type 3 d. Type 4 Competency: Laptop and portable devices 4) Which type of battery is used most often in notebook computers? a. NiMH b. NiCad c. Li-ION d. Zinc Air Competency: Laptop and portable devices 5) Which of the following does the erase lamp remove? a. static charge from the developed image area on the paper b. static charge from the margin areas of the paper c. leftover toner particles from the paper d. any static charge that may remain on the drum Competency: Printers and scanners 6) Which standard that was first available in Windows 95 and that incorporated as a BIOS configuration option to conserve electrical power? a. ACPI b. APM c. PCMIA d. Energy Star Competency: Operating systems 7) Which of the following files is the virtual memory swap file needed to boot Windows 2000/XP? a. Pagefile.sys b. Hal.dll c. Kernel32.dll d. Himem.sys Competency: Operating systems 8) Which of the following protocols guarantees packet delivery? a. HTTP b. IP c. TCP d. UDP Competency: Networks 9) What is the standard recommendation for changing your password? a. -
Magnetic Recording and Readout Memory
SNS college of Technology Coimbatore-641 035 MAGNETIC RECORDING AND READOUT MEMORY Nowadays, large number of information are stored in (or) retrieved from the storage devices, by using devices is magnetic recording heads and they function according to the principle of magnetic induction. Generally Ferro or Ferrimagnetic materials are used in the storage devices because in this type of materials only the magnetic interaction between only two dipoles align themselves parallel to each other. Due to this parallel alignment even if we apply small amount of magnetic field, a large value of magnetization is produced. By using this property information are stored in storage devices. In the storage devices, the recording of digital data (0‟s and 1‟s) depends upon the direction of magnetization in the medium. Magnetic parameters for Recording 1. When current is passed through a coil, a magnetic field is induced. This principle called “Electromagnetic Induction” is used in storage devices. 2. The case with which the material can be magnetized is another parameter. 3. We know the soft magnetic materials are the materials which can easily be magnetized and demagnetized. Hence a data can be stored and erased easily. Such magnetic materials are used in temporary storage devices. 4. Similarly, we know hard magnetic materials cannot be easily magnetized and demagnetized. So such magnetic materials are used in permanent storage devices. 5. In soft magnetic materials, the electrical resistance varies with respect to the magnetization and this effect is called magneto-resistance. This parameter is used in specific thin film systems. 19PYB102 & PHYSICS OF MATERIALS AND PHOTONICS D.SENGOTTAIYAN /AP/PHYSICS Page 1 SNS college of Technology Coimbatore-641 035 The magnetic medium is made of magnetic materials (Ferro or Ferric oxide) deposited on this plastic. -
Magnetic Storage- Magnetic-Core Memory, Magnetic Tape,RAM
Magnetic storage- From magnetic tape to HDD Juhász Levente 2016.02.24 Table of contents 1. Introduction 2. Magnetic tape 3. Magnetic-core memory 4. Bubble memory 5. Hard disk drive 6. Applications, future prospects 7. References 1. Magnetic storage - introduction Magnetic storage: Recording & storage of data on a magnetised medium A form of „non-volatile” memory Data accessed using read/write heads Widely used for computer data storage, audio and video applications, magnetic stripe cards etc. 1. Magnetic storage - introduction 2. Magnetic tape 1928 Germany: Magnetic tape for audio recording by Fritz Pfleumer • Fe2O3 coating on paper stripes, further developed by AEG & BASF 1951: UNIVAC- first use of magnetic tape for data storage • 12,7 mm Ni-plated brass-phosphorus alloy tape • 128 characters /inch data density • 7000 ch. /s writing speed 2. Magnetic tape 2. Magnetic tape 1950s: IBM : patented magnetic tape technology • 12,7 mm wide magnetic tape on a 26,7 cm reel • 370-730 m long tapes 1980: 1100 m PET –based tape • 18 cm reel for developers • 7, 9 stripe tapes (8 bit + parity) • Capacity up to 140 MB DEC –tapes for personal use 2. Magnetic tape 2014: Sony & IBM recorded 148 Gbit /squareinch tape capacity 185 TB! 2. Magnetic tape Remanent structural change in a magnetic medium Analog or digital recording (binary storage) Longitudinal or perpendicular recording Ni-Fe –alloy core in tape head 2. Magnetic tape Hysteresis in magnetic recording 40-150 kHz bias signal applied to the tape to remove its „magnetic history” and „stir” the magnetization Each recorded signal will encounter the same magnetic condition Current in tape head proportional to the signal to be recorded 2. -
Computing :: Operatingsystems :: DOS Beyond 640K 2Nd
DOS® Beyond 640K 2nd Edition DOS® Beyond 640K 2nd Edition James S. Forney Windcrest®/McGraw-Hill SECOND EDITION FIRST PRINTING © 1992 by James S. Forney. First Edition © 1989 by James S. Forney. Published by Windcrest Books, an imprint of TAB Books. TAB Books is a division of McGraw-Hill, Inc. The name "Windcrest" is a registered trademark of TAB Books. Printed in the United States of America. All rights reserved. The publisher takes no responsibility for the use of any of the materials or methods described in this book, nor for the products thereof. Library of Congress Cataloging-in-Publication Data Forney, James. DOS beyond 640K / by James S. Forney. - 2nd ed. p. cm. Rev. ed. of: MS-DOS beyond 640K. Includes index. ISBN 0-8306-9717-9 ISBN 0-8306-3744-3 (pbk.) 1. Operating systems (Computers) 2. MS-DOS (Computer file) 3. PC -DOS (Computer file) 4. Random access memory. I. Forney, James. MS-DOS beyond 640K. II. Title. QA76.76.063F644 1991 0058.4'3--dc20 91-24629 CIP TAB Books offers software for sale. For information and a catalog, please contact TAB Software Department, Blue Ridge Summit, PA 17294-0850. Acquisitions Editor: Stephen Moore Production: Katherine G. Brown Book Design: Jaclyn J. Boone Cover: Sandra Blair Design, Harrisburg, PA WTl To Sheila Contents Preface Xlll Acknowledgments xv Introduction xvii Chapter 1. The unexpanded system 1 Physical limits of the system 2 The physical machine 5 Life beyond 640K 7 The operating system 10 Evolution: a two-way street 12 What else is in there? 13 Out of hiding 13 Chapter 2. -
Table of Contents
^9/08/89 11:43 U206 883 8101 MICROSOFT CORP.. 12)002 Table of Contents m-^mm Table of Contaits 09/08/89 11:44 'Q206 883 8101 MICROSOFT CORP _ _ [ 1003 The Story Begins JAN The story of MS-DOS_begins ..in a hotel in Albuquerque, New Mexico. 1975 In 1975, Albuquerque was the home of Micro Instrumentation'Telemetry MiTS introduces the 8080-baseci Systems, better known as MITS- In January of that year, MITS had intro- Altair computer. duced a kit computer called the Altair. When it was first snipped, the Altair consisted of a metal box with, a panel of switches for input and output, a power supply, and-two boards. One board was the CPU.. At its heart was the 8-bit 8080 microprocessor chip from InteL The other board provided 256 bytes of memory. The Altair had no keyboard, no monitor, and no permanent storage. But it had a revolutionary price tag. It cost $397. For the first time, the term "personal computer" acquired a real-world meaning. The real world of the Altair was not, however, the world of business computing. It was-primarily the world of the computer hobbyist These first users of the microcomputer were not as interested in using spreadsheets and word processors as they were in programming. Accordingly, the first soft- ware for the Altair was a programming language. And the company that developed it was a two-man firm, in Albuquerque, called Microsoft FEB The two men at MiCTosof^ej^PailjAJten^and Bffl Gates-Allen and 1975 Gates-had met when-they were both students at Lakeside High School in Microsoft sails first BASIC to Seattle, where they began their computer-science education oa the school's MITS lor Altair time-sharing terminal By the time Gates had graduated, me two of them had computer. -
IMS D7305A IBM 386 PC Occam 2 Toolset Delivery Manual
·. ,i .. W .. ~.~.. mrumos®[] IMS D7305A IBM 386 PC occam 2 Toolset delivery manual INMOS"'Y£'-is a member of the SGS-THOMSON Microelectronics Group © INMOS Limited 1993. This document may not be copied, in whole or in part, without prior written consent of INMOS. •,DIITI11OS·, IMS, and occam are trademarks of INMOS Limited. ~~em is a registered trademark of the SGS-THOMSON Microelectronics Group. INMOS Limited is a member of the SGS-THOMSON Microelectronics Group. WATCOM is a trademark of WATCOM Systems Inc. INMOS document number: 72 TDS 389 01 IContents 1 Introduction . 1 1.1 Layout of this manual . 1 1.2 Prerequisites for running the toolset . 1 1.3 Compatibility with previous releases . 1 2 Installing the release . 3 2.1 Installation . 3 2.2 Hosted and non-hosted tools . 4 2.3 Setting up the toolset for use . 5 2.3.1 Setting the FILES variable . 5 2.3.2 Setting the correct PATH . 5 2.3.3 Configuring the DOS extender . 5 2.3.4 Setting up the iserver . 6 Selecting the required iserver . 6 Special notes for users of the PC-NFS iserver . 7 Notes common to both versions of the iserver . 7 Note for users of the IMS B008 motherboard . 8 2.3.5 Use of the iserver by transputer tool driver programs 8 2.3.6 Setting the board memory size . 9 2.3.7 Setting root memory size for idebug . 9 2.3.8 Setting a file system search path . 9 2.3.9 Setting the device driver and terminal definition file 10 2.3.10 Environment space . -
Microsoft Windows Resource
Chapter 13 Troubleshooting Windows 3.1 This chapter provides information about troubleshooting Microsoft Windows for both general users and experts. If you have trouble installing Windows, or if Windows doesn’t run as well as you expected, this chapter will help you find out why and show you how to isolate and solve common problems. Related Information • Windows User’s Guide: Chapter 15, “Maintaining Windows with Setup” See also Chapter 4, “Troubleshooting,” in the Getting Started booklet • Windows Resource Kit: “The Troubleshooting Flowcharts for Windows 3.1” in “Welcome” Contents of this chapter About Troubleshooting.....................................................................................396 Getting Started with Troubleshooting........................................................396 Creating a “Clean Boot” for Troubleshooting ...........................................398 Troubleshooting Setup......................................................................................399 Troubleshooting TSR s During Setup .........................................................400 Troubleshooting MS-DOS Mode Setup......................................................401 Troubleshooting Windows Mode Setup ....................................................402 Troubleshooting Windows Configuration ........................................................403 Troubleshooting the Desktop Configuration .............................................403 Troubleshooting TSR Compatibility Problems ..........................................404 -
Microsoft Windows Resource
Appendix D Articles This appendix contains technical articles on these topics: • Microsoft Windows for Pens • Quarterdeck’s QEMM –386 and Windows 3.1 • PC-NFS and Windows 3.1 • FastDisk: An Introduction to 32–Bit Access Contents of this appendix Windows for Pens.............................................................................................506 Why Pens?.................................................................................................506 Technical Highlights .................................................................................508 The Internal Architecture of Pen for Windows..........................................509 RC Manager ..............................................................................................510 Pen for Windows Support Resources ........................................................511 Quarterdeck’s QEMM –386 and Windows 3.1 ..................................................515 QEMM –386 Features for Windows ...........................................................515 Troubleshooting for QEMM -386 ...............................................................516 Getting Additional Help ............................................................................518 PC-NFS and Windows 3.1.................................................................................519 Installation Tips.........................................................................................519 Using PC-NFS With Windows ...................................................................519 -
Memory Management
University of Mississippi eGrove American Institute of Certified Public Guides, Handbooks and Manuals Accountants (AICPA) Historical Collection 1993 Memory management American Institute of Certified Public Accountants. Information echnologyT Division Follow this and additional works at: https://egrove.olemiss.edu/aicpa_guides Part of the Accounting Commons, and the Taxation Commons Recommended Citation American Institute of Certified Public Accountants. Information echnologyT Division, "Memory management" (1993). Guides, Handbooks and Manuals. 486. https://egrove.olemiss.edu/aicpa_guides/486 This Book is brought to you for free and open access by the American Institute of Certified Public Accountants (AICPA) Historical Collection at eGrove. It has been accepted for inclusion in Guides, Handbooks and Manuals by an authorized administrator of eGrove. For more information, please contact [email protected]. INFORMATION TECHNOLOGY DIVISION BULLETIN AICPA American Institute of Certified Public Accountants TECHNOLOGY Notice to Readers This technology bulletin is the first in a series of bulletins that provide accountants with information about a particular technology. These bulletins are issued by the AICPA Information Technology Division for the benefit of Information Technology Section Members. This bulletin does not establish standards or preferred practice; it represents the opinion of the author and does not necessarily reflect the policies of the AICPA or the Information Technology Division. The Information Technology Division expresses its appreciation to the author of this technology bulletin, Liz O’Dell. She is employed by Crowe, Chizek and Company in South Bend, Indiana, as a manager of firmwide microcomputer operations, supporting both hardware and software applications. Liz is an Indiana University graduate with an associate’s degree in computer information systems and a bachelor’s degree in business management. -
Investigation of Fast Initialization of Spacecraft Bubble Memory Systems Karen T, Looney, Charles D, Nichols., and Paul J, Hayes
N 8 4 - 2 7 0 7 7 NASA Technical Memorandum 85832 INVESTIGATION OF FAST INITIALIZATION OF SPACECRAFT BUBBLE MEMORY SYSTEMS KAREN T, LOONEY, CHARLES D, NICHOLS., AND PAUL J, HAYES JUNE 1984 NASA National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665 SUMMARY Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory system organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn-on is required. Bubble device architectures, which provide redundant loop coding in the bubble device, limit the initialization speed. Alternate initialization techniques have been investigated to overcome this design limitation. An initialization technique using a small amount of external storage has been demonstrated, using software written in 8085 assembly language and PL/M. ' This technique provides several orders of magnitude improvement over the normal initialization time. INTRODUCTION Bubble memory systems are quickly becoming a preferred storage medium in environments where a non-volatile storage medium is required. The utilization of a bubble storage system offers the benefits of increased reliability, reduced maintainance, and permanent data integrity. The implementaton of large bubble memory systems in spacecraft applications requires that the memory modules be power strobed for the conservation of the available energy resources. Each time a module is turned on for use it must be initialized to code the redundant loop information of the selected bubble devices into the bubble controller. Present structures of bubble systems dictate that a faster initialization procedure is needed in order to capitalize on the advantages offered by a bubble memory system. -
Older Operating Systems
Older Operating Systems Class Notes # 14 Computer Configuration November 20, 2003 The default configuration of DOS, which may be adequate for many users, is intended to work with the greatest number of systems. DOS also allows users to take full advantage of their computers features. We could configure our computer to operate more efficiently. There are two general ways of making our computers efficient: • Add or replace hardware • Use software to attain an optimal configuration for existing hardware resources DOS falls in the second category. With DOS we can manage our memory more efficiently and we can also use special device drivers and utility programs to enhance the performance of our hardware and software. Device Drivers Device drivers are software programs, which is used by DOS to control hardware devices. Most device drivers are loaded at boot time by including the device driver in your CONFIG.SYS. The DEVICE command tells DOS to load a device driver and uses the following syntax: DEVICE = driver /switches The driver is the actual software for the device, and the /switches are any switches that the device driver software needs. For example, the mouse device driver (MOUSE.SYS) is loaded in the CONFIG.SYS file with this command: DEVICE = C:\DRIVERS\MOUSE.SYS The DEVICE = command tells DOS that the program file name MOUSE.SYS stored in the \DRIVERS directory on drive C is a TSR needed to drive the mouse device. You may also load certain device drivers in AUTOEXEC.BAT. For example, the mouse device driver can also be loaded from the AUTOEXEC.BAT file. -
Ramcram.Txt MEMORY MANAGEMENT for CD-ROM WORKSTATIONS
ramcram.txt MEMORY MANAGEMENT FOR CD-ROM WORKSTATIONS by Peter Brueggeman Scripps Institution of Oceanography Library University of California San Diego "Memory management for CD-ROM workstations, Part II", CD-ROM PROFESSIONAL, 4(6):74-78, November 1991. "Memory management for CD-ROM workstations, Part I", CD-ROM PROFESSIONAL, 4(5):39-43, September 1991. The nature of the memory in IBM compatible microcomputers can be confusing to understand and worse to manage. If you are lucky, everything runs fine on the CD-ROM workstation or network and an article on memory management will be interesting but lack immediacy. Try to load other software concurrent with CD-ROM software or to implement network access and you may be due for a crash course in DOS memory, its limitations, and management. Running CD-ROM software usually demands considerable memory resources. Software in general has become more memory-hungry with time, and CD-ROM software have a reputation for being very hungry. Many CD-ROM products state that 640K RAM memory is required; this is not the exact memory requirement of the CD-ROM software. The CD-ROM software itself uses some of the 640K RAM as does DOS. Rarely will the exact memory requirement of a CD-ROM software be readily accessible. Sales representatives usually will not know it and only experienced technical support staff may know. CD-ROM workstation/network managers should try to learn the exact memory requirement of their CD-ROM software. Knowing their memory requirement helps greatly in selecting the level of solution(s). Addressing memory shortfalls may involve considerable tinkering and patience and involve seemingly endless rebooting.