Memory Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alien Legacy On-Line Documentation
™ ContentsContents INTRODUCTION ————————————————— 4 αGETTING STARTED ———————————————— 6 About This Manual —————————————— 6 Manual Changes And Additions ————————— 6 Installing Alien Legacy ————————————— 6 System Requirements ————————————— 6 Installing Alien Legacy On Your Hard Drive ———— 7 Starting Alienβ Legacy ————————————— 7 Start-Up Problems ——————————————— 7 Changing Sound Options ——————————— 8 HISTORICAL BRIEFING ——————————————— 9 QUICK REFERENCE ——————————————— 12 Control Screen Diagram ——————————— 12 Game Controls ——————————————— 14 Commands ———————————————— 14 ORIENTATION TOUR —————————————— 20 CALYPSO CONTROLS GUIDE ——————————— 27 Startup Menu ——————————————— 27 Universal Commands ———————————— 27 Bridge ——————————————————— 28 γ General Options Menu ——————————— 30 Video Phone ———————————————— 31 Comm. Panel ———————————————— 31 Advisor Screens —————————————— 32 Technology Manager ———————————— 34 Inventions ————————————————— 34 Sciences —————————————————— 35 Vehicle Manager —————————————— 36 Missions —————————————————— 37 Cargo ——————————————————— 40 Launching Or Changing A Mission —————— 41 Mercator Map ——————————————— 42 Inactive Map Options ———————————— 42 Active Map Options ————————————— 43 Ship Controls ———————————————— 44 Surface Exploration Screen —————————— 46 Main Window ——————————————— 46 2 Control Panel ———————————————— 47 δOther Displays ——————————————— 48 Space Map ———————————————— 50 Main Window ——————————————— 50 Space Map Controls ————————————— 51 Planet Options Menu ε———————————— 52 Colony Manager —————————————— -
Memory Protection at Option
Memory Protection at Option Application-Tailored Memory Safety in Safety-Critical Embedded Systems – Speicherschutz nach Wahl Auf die Anwendung zugeschnittene Speichersicherheit in sicherheitskritischen eingebetteten Systemen Der Technischen Fakultät der Universität Erlangen-Nürnberg zur Erlangung des Grades Doktor-Ingenieur vorgelegt von Michael Stilkerich Erlangen — 2012 Als Dissertation genehmigt von der Technischen Fakultät Universität Erlangen-Nürnberg Tag der Einreichung: 09.07.2012 Tag der Promotion: 30.11.2012 Dekan: Prof. Dr.-Ing. Marion Merklein Berichterstatter: Prof. Dr.-Ing. Wolfgang Schröder-Preikschat Prof. Dr. Michael Philippsen Abstract With the increasing capabilities and resources available on microcontrollers, there is a trend in the embedded industry to integrate multiple software functions on a single system to save cost, size, weight, and power. The integration raises new requirements, thereunder the need for spatial isolation, which is commonly established by using a memory protection unit (MPU) that can constrain access to the physical address space to a fixed set of address regions. MPU-based protection is limited in terms of available hardware, flexibility, granularity and ease of use. Software-based memory protection can provide an alternative or complement MPU-based protection, but has found little attention in the embedded domain. In this thesis, I evaluate qualitative and quantitative advantages and limitations of MPU-based memory protection and software-based protection based on a multi-JVM. I developed a framework composed of the AUTOSAR OS-like operating system CiAO and KESO, a Java implementation for deeply embedded systems. The framework allows choosing from no memory protection, MPU-based protection, software-based protection, and a combination of the two. -
Kontron / ICS Advent SB586P(V) Manual (Pdf)
Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Kontron / ICS Advent SB586PV at our website: Click HERE Model SB586P(V) Product Manual MANUAL NUMBER : 00431-027-3C Page - ii FOREWORD This product manual provides information to install, operate and or program the referenced product(s) manufactured or distributed by ICS Advent. The following pages contain information regarding the war- ranty and repair policies. Technical assistance is available at: 800-480-0044. Manual Errors, Omissions and Bugs: A "Bug Sheet" is included as the last page of this manual. Please use the "Bug Sheet" if you experience any problems with the manual that requires correction. The information in this document is provided for reference only. ICS Advent does not assume any liability arising from the application or use of the information or products described herein. This document may contain or reference information and products protected by copyrights or patents and does not convey any license under the patent rights of ICS Advent, nor the rights of others. -
Chapter 3. Booting Operating Systems
Chapter 3. Booting Operating Systems Abstract: Chapter 3 provides a complete coverage on operating systems booting. It explains the booting principle and the booting sequence of various kinds of bootable devices. These include booting from floppy disk, hard disk, CDROM and USB drives. Instead of writing a customized booter to boot up only MTX, it shows how to develop booter programs to boot up real operating systems, such as Linux, from a variety of bootable devices. In particular, it shows how to boot up generic Linux bzImage kernels with initial ramdisk support. It is shown that the hard disk and CDROM booters developed in this book are comparable to GRUB and isolinux in performance. In addition, it demonstrates the booter programs by sample systems. 3.1. Booting Booting, which is short for bootstrap, refers to the process of loading an operating system image into computer memory and starting up the operating system. As such, it is the first step to run an operating system. Despite its importance and widespread interests among computer users, the subject of booting is rarely discussed in operating system books. Information on booting are usually scattered and, in most cases, incomplete. A systematic treatment of the booting process has been lacking. The purpose of this chapter is to try to fill this void. In this chapter, we shall discuss the booting principle and show how to write booter programs to boot up real operating systems. As one might expect, the booting process is highly machine dependent. To be more specific, we shall only consider the booting process of Intel x86 based PCs. -
SOS Internals
Understanding a Simple Operating System SOS is a Simple Operating System designed for the 32-bit x86 architecture. Its purpose is to understand basic concepts of operating system design. These notes are meant to help you recall the class discussions. Chapter 1 : Starting Up SOS 3 Registers in the IA-32 x86 Architecture BIOS (Basic Input/Ouput System) Routines Real Mode Addressing Organization of SOS on Disk and Memory Master Boot Record SOS Startup A20 Line 32-bit Protected Mode Addressing Privilege Level Global Descriptor Table (GDT) More on Privilege Levels The GDT Setup Enabling Protected Mode Calling main() Chapter 2 : SOS Initializations 10 In main() Disk Initialization Display Initialization Setting Up Interrupt Handlers Interrupt Descriptor Table (IDT) A Default Interrupt Handler Load IDT The Programmable Interrupt Controller (PIC) The Keyboard Interrupt Handler Starting the Console Putting It All Together Chapter 3: SOS1 – Single-tasking SOS 16 Running User Programs GDT Entries Default Exception Handler User Programs Executable Format System Calls Creating User Programs The run Command Understanding a Simple Operating System The DUMB Memory Manager Program Address Space Process Control Block Switching to a User Program Kernel-Mode Stack Chapter 4 : SOS2 – Multi-tasking SOS 24 Running Multiple User Programs NAÏVE Memory Manager Programmable Interval Timer (PIT) Process States Timer Interrupt Handler Sleep System Call The run Command Process Queue The Scheduler The Complete Picture ps Command Chapter 5 : SOS3 – Paging in SOS 31 -
HALO: Post-Link Heap-Layout Optimisation
HALO: Post-Link Heap-Layout Optimisation Joe Savage Timothy M. Jones University of Cambridge, UK University of Cambridge, UK [email protected] [email protected] Abstract 1 Introduction Today, general-purpose memory allocators dominate the As the gap between memory and processor speeds continues landscape of dynamic memory management. While these so- to widen, efficient cache utilisation is more important than lutions can provide reasonably good behaviour across a wide ever. While compilers have long employed techniques like range of workloads, it is an unfortunate reality that their basic-block reordering, loop fission and tiling, and intelligent behaviour for any particular workload can be highly subop- register allocation to improve the cache behaviour of pro- timal. By catering primarily to average and worst-case usage grams, the layout of dynamically allocated memory remains patterns, these allocators deny programs the advantages of largely beyond the reach of static tools. domain-specific optimisations, and thus may inadvertently Today, when a C++ program calls new, or a C program place data in a manner that hinders performance, generating malloc, its request is satisfied by a general-purpose allocator unnecessary cache misses and load stalls. with no intimate knowledge of what the program does or To help alleviate these issues, we propose HALO: a post- how its data objects are used. Allocations are made through link profile-guided optimisation tool that can improve the fixed, lifeless interfaces, and fulfilled by -
Computer Problem Solving 1) What Is the First 640K of Memory Addresses Called?
Computer Problem Solving 1) What is the first 640k of memory addresses called? a. extended memory b. upper memory c. high memory d. conventional memory Competency: Personal computer components 2) What was the first socket to support dual voltage inputs? a. Socket 7 b. Socket 5 c. Socket 8 d. Socket 423 Competency: Personal computer components 3) Which card is used to add modems and network cards to the portable computer? a. Type 1 b. Type 2 c. Type 3 d. Type 4 Competency: Laptop and portable devices 4) Which type of battery is used most often in notebook computers? a. NiMH b. NiCad c. Li-ION d. Zinc Air Competency: Laptop and portable devices 5) Which of the following does the erase lamp remove? a. static charge from the developed image area on the paper b. static charge from the margin areas of the paper c. leftover toner particles from the paper d. any static charge that may remain on the drum Competency: Printers and scanners 6) Which standard that was first available in Windows 95 and that incorporated as a BIOS configuration option to conserve electrical power? a. ACPI b. APM c. PCMIA d. Energy Star Competency: Operating systems 7) Which of the following files is the virtual memory swap file needed to boot Windows 2000/XP? a. Pagefile.sys b. Hal.dll c. Kernel32.dll d. Himem.sys Competency: Operating systems 8) Which of the following protocols guarantees packet delivery? a. HTTP b. IP c. TCP d. UDP Competency: Networks 9) What is the standard recommendation for changing your password? a. -
The Bootstrap the Where Are Wenow?
Dedicated Operating System March2011 Prof. Dr.Antônio AugustoFröhlich http://www.lisha.ufsc.br/Guto Getting ready for the OS for the ready Getting [email protected] LISHA/UFSC The Boot: The March 2011 (http://www.lisha.ufsc.br) 1 Dedicated Operating System March2011 ● ● ● BIOSgot the system ready for BIOSbrought the system on ● Lots of “jmp” so far, no calls, why? ● First instruction fetched ● initializedBIOS a complex architecture Where the stack?Where is 0x7c00 BIST, POST, hooks The Bootstrap Where are we now? we are Where (http://www.lisha.ufsc.br) =>Today class 2 EPOS Bootstrap: m src/boot/pc_boot.S e t ; CONSTANTS s ;============================================================ y ; PHYSICAL MEMORY MAP S ; 0x0000 0000 -+-----------------------+ BOOT_IDT ; | IDT (4 K) | g ; 0x0000 1000 -+-----------------------+ BOOT_GDT ; | GDT (4 K) | n i ; 0x0000 2000 -+-----------------------+ t ; : : a ; | BOOT STACK (23 K) | r ; 0x0000 7c00 -+-----------------------+ BOOTSTRAP_STACK e ; | BOOT CODE (512 b) | BOOTSTRAP_CODE p ; 0x0000 7e00 -+-----------------------+ ; | RESERVED (512 b) | O ; 0x0000 8000 -+-----------------------+ DISK_IMAGE ; | DISK IMAGE (608 K) | d ; : : e ; | | t ; 0x000a 0000 -+-----------------------+ a ; | UNUSED (384K) | c ; : : i ; | | d ; 0x000f f000 -+-----------------------+ e D March 2011 (http://www.lisha.ufsc.br) 3 EPOS Bootstrap: Notes m e t s Code to be ran at real mode (16 bits) y S Interrupts (IDT) ● g At real mode, always at 0x0000 n ● i At protected mode, anywhere (IDTR) t a Segmentation (GDT) r ● e Always -
Thank You for Purchasing the Elder Scrolls: Arena. Dedicated Rpgers
The Elder Scrolls ARENA hank you for purchasing The Elder Scrolls: Arena. Dedicated RPGers have invested an incredible amount of effort into creating this detailed simulation. If you enjoy the game, please pass the word! There is no better advertising than a satisfied customer. TYou can also purchase the second chapter of The Elder Scrolls, entitled Daggerfall, in Fall 1996. TES: Daggerfall will feature the same open-endedness and breadth as Arena, but will feature increased NPC (Non-Player-Character) interaction, a faster, more sophisticated 3-D engine, and a more extensive storyline. With all the planned enhancements, Daggerfall will give you even more of an opportunity to role-play your character as you choose. We are very excited about Daggerfall and what it will mean to the role-playing community. On our part, we promise to keep bringing you the best in computer simulation software and welcome any suggestions you may have for how we can serve you better. Journey well, and peace be with you. —The Bethesda Team Installing the Game Place the CD into your computer’s CD-ROM drive. Type the drive letter followed by a colon (Ex: D: for most CD-ROM drives) and hit <ENTER>. Next type INSTALL and hit <ENTER>. If you are installing Arena from floppy disks, select ‘Install Game’ and follow the prompts. Because you are installing from the CDROM, 5 megabytes of data will be copied to your hard drive when you select ‘Exit’. The next step is to configure your game (see below). Configuring Arena to your System To configure any Sound FX and Music drivers once Arena has successfully installed (if you wish to play the game with sound and/or music), choose the ‘Configure Game’ option. -
XICE Lnstallationguide for Motorola 68000, 68HCOOO, 68ECOOO and 68302 Development Systems for DOS and UNIX Hosts
1mmm Applied Microsystems Corporation XICE lnstallationGuide for Motorola 68000, 68HCOOO, 68ECOOO and 68302 Development Systems for DOS and UNIX Hosts May 1993 PIN 922-17140-03 Copyright© 1993 Applied Microsystems Corporation All rights reserved. \' '\'9~t\B<\', nnt:iubmv ~'9\nt . ,:~ s no gnilis' IBM XT and IBM AT are trademarks of IBM Corporation Microsoft and MS-DOS™ are trademarks of Microsoft Corporation. Microtec is a registered trademarks of Microtec Research, Inc. SP ARC, SPARCstation, Sun, Sun-3, Sun-4, NFS, and PC-NFS are trademarks o Microsystems, Inc. UNIX is a registered trademark of AT&T. VALIDATE is a registered tradmark of Applied Microsystems Corporation I Contents Chapter 1 Introduction Organization of the documentation................................... 1-2 Overview of the toolchain................................................... 1-4 XICE ............................................................................. 1-4 XRAY............................................................................ 1-4 C Cross Compiler......................................................... 1-4 C++ Compiler............................................................... 1-4 Chapter2 Installing on a Sun Workstation Step 1: Check minimum requirements ................ ............. 2-2 Requirements for Sun 4 (SPARC) workstations........ 2-2 Step 2: Set up the directory structure............................... 2-3 · Step 3: Copy the software from the tape........................... 2-4 Step 4: Define individual user's setup.............................. -
Computing :: Operatingsystems :: DOS Beyond 640K 2Nd
DOS® Beyond 640K 2nd Edition DOS® Beyond 640K 2nd Edition James S. Forney Windcrest®/McGraw-Hill SECOND EDITION FIRST PRINTING © 1992 by James S. Forney. First Edition © 1989 by James S. Forney. Published by Windcrest Books, an imprint of TAB Books. TAB Books is a division of McGraw-Hill, Inc. The name "Windcrest" is a registered trademark of TAB Books. Printed in the United States of America. All rights reserved. The publisher takes no responsibility for the use of any of the materials or methods described in this book, nor for the products thereof. Library of Congress Cataloging-in-Publication Data Forney, James. DOS beyond 640K / by James S. Forney. - 2nd ed. p. cm. Rev. ed. of: MS-DOS beyond 640K. Includes index. ISBN 0-8306-9717-9 ISBN 0-8306-3744-3 (pbk.) 1. Operating systems (Computers) 2. MS-DOS (Computer file) 3. PC -DOS (Computer file) 4. Random access memory. I. Forney, James. MS-DOS beyond 640K. II. Title. QA76.76.063F644 1991 0058.4'3--dc20 91-24629 CIP TAB Books offers software for sale. For information and a catalog, please contact TAB Software Department, Blue Ridge Summit, PA 17294-0850. Acquisitions Editor: Stephen Moore Production: Katherine G. Brown Book Design: Jaclyn J. Boone Cover: Sandra Blair Design, Harrisburg, PA WTl To Sheila Contents Preface Xlll Acknowledgments xv Introduction xvii Chapter 1. The unexpanded system 1 Physical limits of the system 2 The physical machine 5 Life beyond 640K 7 The operating system 10 Evolution: a two-way street 12 What else is in there? 13 Out of hiding 13 Chapter 2. -
DR DOS for the Zfx86
DR DOS for the ZFx86 Cost Effective, Reliable, Rapid Deployment of Embedded Systems w DR DOS on the ZFx86 gets products to market quickly at the lowest development and ownership cost. w Thousands of compatible applications, drivers and utilities available free or at minimal cost. w Full documentation available. DR DOS 7.03 Key Features of DR DOS Online Manual - DRDOS is supplied with a complete The ideal embedded DOS system, online manual that contains detailed information about all designed for out-of-the-box of the features of the operating system including the basic implementation into ROM or Flash commands, and the advanced utilities. It also has online ROM with tools and associated help available for all its commands. documents available in the DRDOS Memory Management - Memory management features OEM Documentation Kit. include a set of device drivers and commands that enable w 100% MS-DOS 6.22 compatible.. you to manage memory efficiently and make as much memory as possible available to your applications. w Comprehensive DOS utility set DOS Protected Mode Services - DOS Protected Mode w Multitasking, with API for developers Services (DPMS) interface allows specially-implemented w DPMS memory manager in addition to DPMI device drivers and TSRs to operate in extended memory. w Stacker disk compression This makes more memory within the first megabyte w NWCACHE - disk caching program available to applications and other conventionally-written drivers and TSRs. Both Stacker* (the disk compression w EMM386 memory manager program), and NWCACHE (the disk cache) use DPMS. w DOS Protected Mode Services (DPMS) Disk Compression - The disk compression component w Multitasking enables you to store more information by compressing the w DR-DOS provides a full multitasking environment data.