Rho Gtpases and Their Regulators in Cell Polarity of the Filamentous Ascomycete Neurospora Crassa

Total Page:16

File Type:pdf, Size:1020Kb

Rho Gtpases and Their Regulators in Cell Polarity of the Filamentous Ascomycete Neurospora Crassa Rho GTPases and their regulators in cell polarity of the filamentous ascomycete Neurospora crassa Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen vorgelegt von Corinna Richthammer aus Nürnberg Göttingen 2011 Mitglied des Betreuungsausschusses: Dr. Stephan Seiler (Referent) Abteilung Molekulare Mikrobiologie und Genetik, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen Mitglied des Betreuungsausschusses: Prof. Dr. Stefanie Pöggeler (Referentin) Abteilung Genetik eukaryotischer Mikroorganismen, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen Mitglied des Betreuungsausschusses: Prof. Dr. Andreas Wodarz Abteilung Stammzellbiologie, Göttinger Zentrum für Molekulare Biowissenschaften, Georg- August-Universität Göttingen Tag der mündlichen Prüfung: I hereby confirm that this thesis has been written independently and with no other sources and aids than quoted. Göttingen, 31.01.2011 Corinna Richthammer Parts of this work have been or will be published in: Justa-Schuch, D., Heilig, Y., Richthammer, C., and Seiler, S. (2010). Septum formation is regulated by the RHO4-specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Mol. Microbiol 76, 220-235. Riquelme, M., Yarden, O., Bartnicki-Garcia, S., Bowman, B., Castro-Longoria, E., F ee J F ei e F ei g e i -Pérez, R., Plamann, M., Rasmussen, C., Richthammer, C., Roberson, R. W, Sanchez-Leon, E., Seiler, S., and Watters, M. K. Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. (Article in press, to appear in Fungal Biol., 2011) Table of Contents i Table of Contents 1. Summary ............................................................................................................................ 1 2. Zusammenfassung ........................................................................................................... 3 3. Introduction ....................................................................................................................... 5 3.1 Structure and mechanism of Rho GTPases ............................................................... 5 3.2 General regulation of Rho GTPases ........................................................................... 6 3.3 Effector pathways, cellular functions and fine-tuning of Rho GTPase signalling ....... 8 3.4 Rho GTPases and polarized growth in yeasts ............................................................ 9 3.4.1 Rho GTPases in yeasts: An overview ................................................................. 9 3.4.2 Polarized growth and its characteristics in yeasts ............................................. 10 3.4.3 The Cdc42 GTPase module and its role in establishment of polarity ............... 11 3.4.3.1 The Cdc42p module in S. cerevisiae .......................................................... 11 3.4.3.2 The Cdc42 module in S. pombe ................................................................. 12 3.4.4 The Rho1 GTPase module as a guardian of cell wall integrity ......................... 13 3.4.4.1 The Rho1p module in S. cerevisiae ............................................................ 13 3.4.4.2 The Rho1 module in S. pombe ................................................................... 16 3.5 Rho GTPases and polarized growth in filamentous fungi ......................................... 18 3.5.1 Characteristics of hyphal growth in filamentous fungi ....................................... 18 3.5.2 The roles of Rac and Cdc42 homologues in filamentous fungi ......................... 20 3.5.3 The functions of Rho1 homologues in filamentous fungi................................... 23 3.6 Rho GTPases and their regulators in N. crassa ....................................................... 25 3.7 Aims of this work ........................................................................................................ 26 4. Materials and Methods ................................................................................................... 27 4.1 Suppliers of chemicals ............................................................................................... 27 4.2 Media and growth conditions for microorganisms .................................................... 27 4.3 Transformation of microorganisms ............................................................................ 27 4.4 Plasmid construction.................................................................................................. 28 4.4.1 General procedure and overview ....................................................................... 28 4.4.2 Full-length cDNA constructs of putative RhoGEFs and RhoGAPs ................... 35 4.4.3 Plasmids encoding MBP- and GST-tagged RhoGEF constructs ...................... 35 4.4.4 Plasmids encoding MBP-tagged GAP constructs ............................................. 36 4.4.5 Plasmids for yeast two-hybrid analyses ............................................................. 37 4.4.6 Plasmids for analysis of subcellular fusion protein localization ......................... 39 4.4.7 Plasmids for overexpression of epitope-tagged fusion proteins for phenotypic ... rescue and coimmunoprecipitation experiments ............................................... 41 4.5 Strains ........................................................................................................................ 42 ii Table of Contents 4.6 General molecular biological techniques .................................................................. 45 4.6.1 Isolation and analysis of nucleic acids ............................................................... 45 4.6.2 Reverse transcription of RNA............................................................................. 45 4.6.3 Polymerase chain reaction (PCR) ...................................................................... 46 4.6.4 DNA agarose gel electrophoresis ...................................................................... 46 4.6.5 Enzymatic restriction and modification of DNA .................................................. 46 4.6.6 Ligation ............................................................................................................... 47 4.7 Biochemical and immunological methods ................................................................. 47 4.7.1 Preparation of N. crassa crude extracts for protein analysis ............................. 47 4.7.2 Separation of proteins by SDS polyacrylamide gel electrophoresis (PAGE) .... 47 4.7.3 Western blotting.................................................................................................. 48 4.7.4 Immunoprecipitation ........................................................................................... 48 4.7.5 Analysis of MAK1 phosphorylation status.......................................................... 49 4.7.6 Protein expression and purification from E. coli ................................................ 50 4.7.7 In vitro GEF activity assays ................................................................................ 51 4.7.8 Copurification experiments ................................................................................. 52 4.8 Yeast two-hybrid assays ............................................................................................ 52 4.9 Microscopy ................................................................................................................. 52 4.10 Bioinformatic tools ..................................................................................................... 53 4.10.1 DNA and protein sequence analysis .................................................................. 53 4.10.2 Phylogenetic analysis and alignment ................................................................. 53 5. Results ............................................................................................................................. 55 5.1 Analysis of Rho regulator specificity in N. crassa ..................................................... 55 5.1.1 Comparison with the yeast Rho regulatory machinery ...................................... 55 5.1.2 Heterologous expression and purification of RhoGAP and RhoGEF ................... constructs ........................................................................................................... 58 5.1.3 In vitro GEF activity assays ................................................................................ 60 5.2 Analysis of the CDC42/RAC/CDC24 module in N. crassa ....................................... 64 5.2.1 Morphological characterization of mutants ........................................................ 64 5.2.2 In vitro GEF activity of mutant CDC24 versions ................................................ 68 5.2.3 Analysis of the subcellular localization of RAC and CDC42 ............................. 71 5.3 Analysis of the RHO1/RHO2/NCU00668 module in N. crassa ................................ 73 5.3.1 Potential autoregulatory effect of the DEP domain on GEF activity of.................. NCU00668 .......................................................................................................... 73 5.3.2 Morphological characterization of rho-1, rho-2 and NCU00668 mutants .......... 75 5.3.3 Effector pathways regulated by RHO1 and RHO2 in N. crassa ........................ 78 5.3.4 Analysis of the
Recommended publications
  • Structure of the Dock2âˆ'elmo1 Complex Provides Insights Into
    ARTICLE https://doi.org/10.1038/s41467-020-17271-9 OPEN Structure of the DOCK2−ELMO1 complex provides insights into regulation of the auto-inhibited state Leifu Chang1,7, Jing Yang1, Chang Hwa Jo 2, Andreas Boland 1,8, Ziguo Zhang 1, Stephen H. McLaughlin 1, Afnan Abu-Thuraia 3, Ryan C. Killoran2, Matthew J. Smith 2,4,9, Jean-Francois Côté 3,5,6,9 & ✉ David Barford 1 DOCK (dedicator of cytokinesis) proteins are multidomain guanine nucleotide exchange 1234567890():,; factors (GEFs) for RHO GTPases that regulate intracellular actin dynamics. DOCK proteins share catalytic (DOCKDHR2) and membrane-associated (DOCKDHR1) domains. The structurally-related DOCK1 and DOCK2 GEFs are specific for RAC, and require ELMO (engulfment and cell motility) proteins for function. The N-terminal RAS-binding domain (RBD) of ELMO (ELMORBD) interacts with RHOG to modulate DOCK1/2 activity. Here, we determine the cryo-EM structures of DOCK2−ELMO1 alone, and as a ternary complex with RAC1, together with the crystal structure of a RHOG−ELMO2RBD complex. The binary DOCK2−ELMO1 complex adopts a closed, auto-inhibited conformation. Relief of auto- inhibition to an active, open state, due to a conformational change of the ELMO1 subunit, exposes binding sites for RAC1 on DOCK2DHR2, and RHOG and BAI GPCRs on ELMO1. Our structure explains how up-stream effectors, including DOCK2 and ELMO1 phosphorylation, destabilise the auto-inhibited state to promote an active GEF. 1 MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. 2 Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada. 3 Montreal Institute of Clinical Research (IRCM), Montréal, QC H2W 1R7, Canada.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Novel Driver Strength Index Highlights Important Cancer Genes in TCGA Pancanatlas Patients
    medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Novel Driver Strength Index highlights important cancer genes in TCGA PanCanAtlas patients Aleksey V. Belikov*, Danila V. Otnyukov, Alexey D. Vyatkin and Sergey V. Leonov Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia *Corresponding author: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. 1 medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261447; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract Elucidating crucial driver genes is paramount for understanding the cancer origins and mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are usually ranked by the frequency of mutation, which, however, does not necessarily reflect their driver strength. Here we hypothesize that driver strength is higher for genes that are preferentially mutated in patients with few driver mutations overall, because these few mutations should be strong enough to initiate cancer.
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • Genetic Analyses of Signal Transduction Pathways
    GENETIC ANALYSES OF SIGNAL TRANSDUCTION PATHWAYS INVOLVED IN NEUROMUSCULAR EXCITABILITY AND NEURODEGENERATION IN CAENORHABTIDIS ELEGANS by BWARENABA KAUTU GUY A. CALDWELL, COMMITTEE CHAIR KIM A. CALDWELL JANIS M. O’DONNELL STEVAN MARCUS KATRINA RAMONELL ANDREW WEST A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2012 Copyright Bwarenaba Kautu 2012 ALL RIGHTS RESERVED ABSTRACT Signal transduction pathways regulate many cellular and molecular aspects of the brain including neurotransmission and cell survival. Defects in neuronal signaling can lead to a variety of cognitive and affective disorders such as epilepsy and Parkinson’s disease. Here, I use a genetically tractable organism, Caenorhabditis elegans (C. elegans), as a model system to study the impact of two canonical signaling pathways on neuronal activity and survival. Using molecular and genetic tools, pharmacological assays, and microscopy techniques, I showed that the canonical Rac GTPase pathway regulates neuronal synchrony in the GABAergic neurons of C. elegans. In our experiments we observed that Rac GTPase mutants exhibited behavioral responses to a GABAA receptor antagonist, pentylenetetrazole. These mutants also exhibited hypersensitivities to an acetylcholinesterase inhibitor, aldicarb, suggesting deficiencies in GABA transmission. Knockdown of selected cytoskeletal genes in Rac hypomorph mutants revealed synergistic interactions, particularly between the dynein motor complex and some members of the canonical Rac-signaling pathway. Examination of the nerve cords of C. elegans revealed that these genetic factors function to regulate vesicle transport in the GABAergic neurons of C. elegans. In my second project, I characterized the role of the heterotrimeric G protein Gαq in the context of neuronal survival, using a C.
    [Show full text]
  • Genetics and Pathogenesis of Polycystic Kidney Disease
    DISEASE OF THE MONTH J Am Soc Nephrol 13: 2384–2398, 2002 Eberhard Ritz, Feature Editor Genetics and Pathogenesis of Polycystic Kidney Disease PETER IGARASHI* and STEFAN SOMLO† *Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas; and †Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, Connecticut. Polycystic kidney disease (PKD), a common genetic cause of Autosomal Dominant Polycystic Kidney Disease chronic renal failure in children and adults, is characterized by ADPKD is one of the most common genetic diseases in the accumulation of fluid-filled cysts in the kidney and other humans affecting all ethnic groups worldwide with an inci- organs. The renal cysts originate from the epithelia of the dence of 1 in 500 to 1 in 1,000 (7). The clinical manifestations nephrons and renal collecting system and are lined by a single include abdominal mass, chronic flank or back pain, gross layer of cells that have higher rates of cellular proliferation and hematuria, urinary tract infection, and urolithiasis. Affected are less differentiated than normal tubular cells (1). Abnormal- individuals typically present in the third and fourth decade, and ities in gene expression, cell polarity, fluid secretion, apoptosis, ESRD usually occurs within 5 to 10 yr after the development and extracellular matrix have also been described in PKD, but of renal insufficiency. However, presentation in infancy or the mechanism of cyst formation remains incompletely under- childhood has also been reported (8,9). In addition to causing stood (2–6). In recent months, there have been several ad- progressive renal failure, renal cysts can be complicated by vances in our understanding of the genetics and pathogenesis hemorrhage, rupture, infection, nephrolithiasis, and intractable of PKD.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors Daochun Sun Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). Wayne State University Dissertations. Paper 558. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS by DAOCHUN SUN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: _______________________________________ Advisor Date _______________________________________ _______________________________________ _______________________________________ © COPYRIGHT BY DAOCHUN SUN 2012 All Rights Reserved DEDICATION This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them. ii ACKNOWLEDGMENTS I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true. I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr.
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Rho Guanine Nucleotide Exchange Factors: Regulators of Rho Gtpase Activity in Development and Disease
    Oncogene (2014) 33, 4021–4035 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease DR Cook1, KL Rossman2,3 and CJ Der1,2,3 The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger). Oncogene (2014) 33, 4021–4035; doi:10.1038/onc.2013.362; published online 16 September 2013 Keywords: Rac1; RhoA; Cdc42; guanine nucleotide exchange factors; cancer;
    [Show full text]