Nanosatellite Probes in Interplanetary Space
Total Page:16
File Type:pdf, Size:1020Kb
NANOSATELLITE PROBES IN INTERPLANETARY SPACE: AN AUGMENTED CASSINI MISSION A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Aerospace Engineering by Trent T Voris July 2017 © 2017 Trent T Voris ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Nanosatellite Probes In Interplanetary Space: An Augmented Cassini Mission AUTHOR: Trent T Voris DATE SUBMITTED: July 2017 COMMITTEE CHAIR: Dr. Jordi Puig-Suari, Ph.D. Professor of Aerospace Engineering COMMITTEE MEMBER: Dr. Eric Mehiel, Ph.D. Professor of Aerospace Engineering COMMITTEE MEMBER: Dr. Kira Abercromby, Ph.D. Associate Professor of Aerospace Engineering COMMITTEE MEMBER: Dr. Ricardo Tubio-Pardavia, Ph.D. Systems Engineer iii ABSTRACT Nanosatellite Probes In Interplanetary Space: An Augmented Cassini Mission Trent T Voris The exploration of interplanetary space is one of the most challenging and costly ventures in human history. The relatively low amount of information on other sites beyond Earth is largely due to the rarity of effective trajectories as well as the high levels of risk and complexity inherent in innovative space exploration. One solution to this lack of information is the use of deployable satellite probes to help augment the main mission and its instrumentation. This “Mother-Daughter” architecture allows for the low-cost exploration of hazardous sites and numerous points of interest without compromising the primary mission. While the end goal is the use of nanosatellites on future interplanetary missions, this thesis focuses on an existing interplanetary mission, Cassini. The aim to demonstrate the scientific viability of this “Mother-Daughter” architecture can be achieved by locating numerous unexplored sites that could have been surveyed with a nanosatellite probe onboard Cassini. Each of these potential sites can be expanded into a unique science mission of its own, and in many cases the trajectories can be selected and optimized to better suit the practical design of a nanosatellite in the various interplanetary environments. Keywords: Architecture, Cassini, CubeSat, Daughter, Interplanetary, Mother, Nanosatellite, Probe, Saturn, Space, Spacecraft, Trajectory iv ACKNOWLEDGMENTS Thanks to Dr. Jordi Puig-Suari, my advisor, for working with me to create a thesis that was both interesting and applicable to the future of interplanetary space exploration, and for putting me in contact with the brightest minds in the field of nanosatellites from NASA’s Jet Propulsion Laboratory in Pasadena. My gratitude also extends out to Dr. Eric Mehiel for his patience and guidance that allowed me to work on a project that best fit my strengths and passions in Aerospace Engineering. Thanks to the scientists and engineers of NASA’s Jet Propulsion Laboratory for allowing me to participate in discussions and studies regarding nanosatellites in interplanetary space. Thanks to my peers at PolySat for showing interest in my results and processes through out this study. Thanks to friends and family for giving me a place to sleep and keeping me sane. Thanks to the baristas of Starbucks on Union, Blossom Hill, Five Cities, and Hermosa Beach for all of the Chai Lattes, Turkey Pesto Sandwiches, and Wi-Fi that allowed me to put in the long hours needed to finish this thesis. v TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................... viii LIST OF FIGURES ................................................................................................ ix LIST OF ACRONYMS .......................................................................................... xi 1. INTRODUCTION ............................................................................................ 1 1.1 THE PROBLEM .............................................................................................. 1 1.2 THE SOLUTION ............................................................................................. 3 2. CASSINI MISSION ............................................................................................ 7 2.1 MISSION ....................................................................................................... 7 2.1.1 Saturn .................................................................................................... 7 2.1.2 Ring science objectives ......................................................................... 7 2.1.3 Icy satellite science objectives .............................................................. 8 2.1.4 Magnetosphere ...................................................................................... 8 2.2 DESIGN ........................................................................................................ 9 3. AUGMENTED MISSION ................................................................................ 10 3.1 GIVENS ...................................................................................................... 11 3.2 SATURN'S RINGS ........................................................................................ 13 3.2.1 Process ................................................................................................ 14 3.2.2 Results ................................................................................................. 15 3.2.3 Other Options ...................................................................................... 16 3.3 SATURN’S MOONS ..................................................................................... 17 vi Page 3.3.1 Setup .................................................................................................... 18 3.3.2 Impactors ............................................................................................. 19 3.3.2.1 Process ............................................................................................ 19 3.3.2.2 Unique Case .................................................................................... 23 3.3.2.3 Totals .............................................................................................. 26 3.3.3 Orbiters ................................................................................................ 31 3.3.3.1 Process ............................................................................................ 31 3.3.3.2 Results ............................................................................................. 32 3.3.4 Flybys .................................................................................................. 35 3.4 SUMMARY .................................................................................................. 35 4. ANCILLARY ANALYSIS ............................................................................... 37 4.1 GIVENS ...................................................................................................... 38 4.2 PLANETARY GRAVITY ASSISTS .................................................................. 40 4.2.1 Process ................................................................................................ 40 4.2.1.1 Deployment Phase .......................................................................... 40 4.2.1.2 Gravity Assist Phase ....................................................................... 42 4.2.1.3 Drift Phase ...................................................................................... 48 4.2.2 Results ................................................................................................. 50 4.3 SUMMARY .................................................................................................. 54 5. CONCLUSION ................................................................................................. 55 BIBLIOGRAPHY ................................................................................................. 58 APPENDIX ........................................................................................................... 61 vii LIST OF TABLES Page Table 1. Missions to the Outer Planets [2] .............................................................. 2 Table 2. Saturnian Moon Data [17] [18] ............................................................... 11 Table 3. Excerpt from Cassini's Tour of the Saturnian System [10] ..................... 13 Table 4. Saturn Ring Impactor Results [19] .......................................................... 16 Table 5. Significant Gravity Wells in the Saturnian System ................................. 19 Table 6. Excerpt of Moon Trajectory Data ........................................................... 23 Table 7. Impactor Proof of Concept ...................................................................... 24 Table 8. Saturn’s Moon Exploration Possibilities ................................................. 36 Table 9. Missions to the Outer Planets [23] .......................................................... 37 Table 10. Planetary Data [22] [14] ........................................................................ 38 Table 11. Planetary Gravity Assist Parameters [22] ............................................. 45 Table 12. Augmented Cassini's Planetary Possibilities ......................................... 54 Table 13. Augmented Cassini Possibilities ........................................................... 57 viii LIST OF FIGURES Page Figure 1. Cosmic Journey [1] .................................................................................