Optimization of Low-Thrust Gravity Assist Trajectories Under Application of Tisserand’S Criterion

Total Page:16

File Type:pdf, Size:1020Kb

Optimization of Low-Thrust Gravity Assist Trajectories Under Application of Tisserand’S Criterion OPTIMIZATION OF LOW-THRUST GRAVITY-ASSIST TRAJECTORIES UNDER APPLICATION OF TISSERAND’S CRITERION Vom Fachbereich Produktionstechnik der UNIVERSITÄT BREMEN zur Erlangung des Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Volker Maiwald Gutachter: Prof. Dr.-Ing. Andreas Rittweger Fachbereich Produktionstechnik, Universität Bremen Prof. Dr.-Ing. Bernd Dachwald Fachbereich Luft- und Raumfahrttechnik, Fachhochschule Aachen Tag der mündlichen Prüfung: 23. März 2018 I think we are going… because it’s in the nature of the human being to face challenges. - Neil Armstrong Acknowledgements My gratitude goes towards my colleagues and friends from the System Analysis Space Segment Department for their support and fellowship. I thank especially Dominik Quantius, Andy Braukhane, Daniel Schubert and Conrad Zeidler for their discussions, support and proof reading concerning my dissertation. I also thank Dr. Marco Sharringhausen, who always helped me whenever I had questions about mathematics and Dr. Wolfgang Seboldt for stepping up on a short notice during the final stages of this thesis and providing much appreciated insight and advice. I thank my parents, Dr. Ursula and Werner Maiwald for enabling me to follow my dreams – I did, thank you! – and my brothers Rüdiger and Tobias for their encouragement. And of course, I thank my incredible wife Inga who patiently endured my struggles with my work and supported me so much, despite the bumpy road far off an optimal path. Revisions for Publication This is a revised edition of the original dissertation. The changes have been made to allow a more self-enclosed reading of the dissertation. Next to editorial changes to address language and typing errors, the following changes have been made to the originally submitted version: 1) The paper by Chen, Kloster and Longuski (2008) has been included in the discussion of Chapters 2.4.2, 6 and 7.11.4. 2) The content about Simulated Annealing in Chapter 5 and its application in Chapter 7 have been expanded for clarification. 3) A thorough explanation about the shape-based trajectory model has been included in Chapter 5, to erase the need for lecture of the respective paper by Wall and Conway (2009). 4) A depiction of an example trajectory (as given in Fig. 5-4) in conjunction with Tisserand Graphs has been added, including a discussion, and can be found in Chapter 7.12 Abstract Exploring the solar system is becoming more and more challenging and the associated space missions are becoming similarly more demanding concerning Δv, targeted at distant bodies. Recent examples for such missions are New Horizons, which visited the dwarf planet Pluto and Rosetta’s rendezvous with the comet 67P/Churyumov-Gerasimenko. These missions would not have been possible without the application of gravity assists, a technique already used for Pioneer 10 and 11 and the Voyager missions. It is based on transferring energy between a planet or other flyby partner and a spacecraft, which results in trajectory changes without associated propellant consumption. Low-thrust propulsion, which is usually operating continuously for significant amounts of time during a mission, is very efficient and thus often acts as mission enabler. The effort - expressed in used propellant mass fraction – to achieve a certain mission goal is usually smaller for low-thrust propulsion than for a similar mission applying chemical propulsion. This is due to the large specific impulse (typically >3000s) associated with low-thrust propulsion. To further enhance our ability to explore the solar system it is therefore desirable to combine these two techniques. Currently, a number of methods exists to optimize low-thrust trajectories and these have been applied to gravity-assist scenarios as well. However, up to now a method for optimization of the actual sequence of gravity- assist partners is not publically available. Instead, the respective mission analyst has provided the sequence, based on assumptions, estimates and experience. The major goal of this dissertation is to close this gap and investigate if it is possible to reduce the amount of expert information needed and for optimization and thus increase the degree to which the search space is searched in completeness. Reducing the amount of involved experience and trajectory resp. sequence information, improves the chance of finding unforseen and worthwhile new mission sequences. This dissertation provides an analysis of how to incorporate the gravity- assist sequence into the optimization process and thus allow a complete, thorough and effective search of useful mission scenarios. First, it is analyzed how gravity-assist sequences are obtained for impulsive missions and whether the same technique can be similarly applied to low-thrust scenarios. A typical approach for gravity- assist planning of impulsive mission scenarios is the application of Tisserand’s Criterion. It is an energy relation, derived for observations of comets in the 19th century within the context of the circular restricted three-body system. This criterion can be represented visually in the form of so- called Tisserand graphs, which are used to map possible gravity-assist sequences. Furthermore, two sources of errors are analyzed: First, the error is analysed, which is caused by applying this relation to the actual solar system and thus diverting from the circular restricted three-body system. Second, the error is analysed, which is caused by adding thrust into the equations of motion. It is shown that the thrust force is negligible in the balance of forces for realistic mission designs. However, the thrust’s effect on the specific orbit energy cannot be neglected. Next, a correction term to apply Tisserand’s Criterion in a low-thrust situation is derived. This term however, does not allow an a priori evaluation of the mission sequence and therefore the modified Tisserand’s Criterion cannot be used to map out possible paths of gravity assists similarly as the unmodified Tisserad’s Criteron for impulsive missions. A method, based on a heuristic search, a shape-based trajectory model and the inclusion of possible gravity-assist partners as variable, is set up. The heuristic search circumvents the usage of Tisserand’s Criterion. As a next step to establish the method, the respective variable structure is analyzed. Some of the relevant trajectory variables are shown to be interdepent. For instance, the flight times of the individual trajectory legs between all encountered bodies have to add up to the total mission flight time. Consequently, two types of variables are defined: global and local. The first are independent and thus can be used by an evolutionary algorithm to evolve the mission candidates into better (based on solution fitness) solutions during the search. The latter are interdependent. A number of example calculations are conducted to assess the success and usefulness of applying this search method. It is shown that for a single gravity assist in an Earth to Jupiter mission the obtained results are reliable concerning the gravity-assist partner and date and successfully improve the non-gravity assist benchmark by more than 20%. Performance for multi-gravity-assist missions is worse, but still solution improvement and a dominance of the global variables can be observed. Further calculations introduce constraints based on the variable regions of maximum v change and show that the solution quality and reliability can thus be improved. Furthermore, the limitations of reproducing existing trajectories are shown and discussed. Δ Finally, the drawbacks of the applied shape-based trajectory model are expressed in a discussion concerning its relation to Tisserand graph diagrams. It is recommended to use a different trajectory model to address these drawbacks in future work. Zusammenfassung Die Herausforderung das Sonnensystem zu erforschen wird immer größer und die damit verbundene Planung und Durchführung von Raumfahrtmissionen entsprechend anspruchsvoller. Dies ist auch dadurch bedingt, dass die Ziele solcher Missionen immer schwerer zu erreichen sind. New Horizons, die einen Vorbeiflug am Zwergplaneten Pluto durchgeführt hat und Rosettas Rendezvous mit dem Kometen 67P/Tschurjumow-Gerasimenko sind zwei aktuelle Beispiele für solche anspruchsvollen Missionen. Ohne die Anwendung von sogenannten Schwungholmanövern wären sie nicht möglich gewesen. Diese Methode ist bereits bei den berühmten Missionen Pioneer 10 und 11 angewendet worden und ebenso während des Voyager-Programms. Sie beruht auf Energieaustauch zwischen Planet und Raumfahrzeug. Dieser Energieaustausch ermöglicht Bahnänderungen ohne Treibstoffaufwand und kann so dazu beitragen, dass eine Mission überhaupt durchführbar wird. Sogenannte Niedrigschubtriebwerke, die üblicherweise über lange Zeitabschnitte einer Mission kontinuierlich betrieben werden, stellen eine effiziente Möglichkeit zur Bahnänderung dar. Um eine bestimmte Mission durchführen zu können, ist der Treibstoffaufwand üblicherweise kleiner als für vergleichbare Mission, die mit chemischen, d.h. impulsiven Triebwerken geflogen werden. Dies ergibt sich aus dem hohen spezifischen Impuls (typischerweise > 3000s) von Niedrigschubtriebwerken. Um also die Erforschung des Sonnensystems voranzutreiben, ist es ratsam den Einsatz von Niedrigschubtriebwerken mit Schwungholmanövern zu kombinieren. Zur Optimierung von Niedrigschubbahnen existieren verschiedene Methoden und diese wurden auch bereits für Schwungholszenarien bei solchen Missionen eingesetzt. Allerdings
Recommended publications
  • Stability of the Moons Orbits in Solar System in the Restricted Three-Body
    Stability of the Moons orbits in Solar system in the restricted three-body problem Sergey V. Ershkov, Institute for Time Nature Explorations, M.V. Lomonosov's Moscow State University, Leninskie gory, 1-12, Moscow 119991, Russia e-mail: [email protected] Abstract: We consider the equations of motion of three-body problem in a Lagrange form (which means a consideration of relative motions of 3-bodies in regard to each other). Analyzing such a system of equations, we consider in details the case of moon‟s motion of negligible mass m₃ around the 2-nd of two giant-bodies m₁, m₂ (which are rotating around their common centre of masses on Kepler’s trajectories), the mass of which is assumed to be less than the mass of central body. Under assumptions of R3BP, we obtain the equations of motion which describe the relative mutual motion of the centre of mass of 2-nd giant-body m₂ (Planet) and the centre of mass of 3-rd body (Moon) with additional effective mass m₂ placed in that centre of mass (m₂ + m₃), where is the dimensionless dynamical parameter. They should be rotating around their common centre of masses on Kepler‟s elliptic orbits. For negligible effective mass (m₂ + m₃) it gives the equations of motion which should describe a quasi-elliptic orbit of 3-rd body (Moon) around the 2-nd body m₂ (Planet) for most of the moons of the Planets in Solar system. But the orbit of Earth‟s Moon should be considered as non-constant elliptic motion for the effective mass 0.0178m₂ placed in the centre of mass for the 3-rd body (Moon).
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • Optimisation of Propellant Consumption for Power Limited Rockets
    Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimisation of Propellant Consumption for Power Limited Rockets. What Role do Power Limited Rockets have in Future Spaceflight Missions? (Dutch title: Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten. De rol van deze raketten in toekomstige ruimtevlucht missies. ) A thesis submitted to the Delft Institute of Applied Mathematics as part to obtain the degree of BACHELOR OF SCIENCE in APPLIED MATHEMATICS by NATHALIE OUDHOF Delft, the Netherlands December 2017 Copyright c 2017 by Nathalie Oudhof. All rights reserved. BSc thesis APPLIED MATHEMATICS \ Optimisation of Propellant Consumption for Power Limited Rockets What Role do Power Limite Rockets have in Future Spaceflight Missions?" (Dutch title: \Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten De rol van deze raketten in toekomstige ruimtevlucht missies.)" NATHALIE OUDHOF Delft University of Technology Supervisor Dr. P.M. Visser Other members of the committee Dr.ir. W.G.M. Groenevelt Drs. E.M. van Elderen 21 December, 2017 Delft Abstract In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the trajectory which costs the least amount of propellant. First some background information as well as the differences between thrust limited and power limited rockets will be discussed. Then the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained. Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found. Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets for these trajectories with the power limited rockets.
    [Show full text]
  • Asteroid Retrieval Mission
    Where you can put your asteroid Nathan Strange, Damon Landau, and ARRM team NASA/JPL-CalTech © 2014 California Institute of Technology. Government sponsorship acknowledged. Distant Retrograde Orbits Works for Earth, Moon, Mars, Phobos, Deimos etc… very stable orbits Other Lunar Storage Orbit Options • Lagrange Points – Earth-Moon L1/L2 • Unstable; this instability enables many interesting low-energy transfers but vehicles require active station keeping to stay in vicinity of L1/L2 – Earth-Moon L4/L5 • Some orbits in this region is may be stable, but are difficult for MPCV to reach • Lunar Weakly Captured Orbits – These are the transition from high lunar orbits to Lagrange point orbits – They are a new and less well understood class of orbits that could be long term stable and could be easier for the MPCV to reach than DROs – More study is needed to determine if these are good options • Intermittent Capture – Weakly captured Earth orbit, escapes and is then recaptured a year later • Earth Orbit with Lunar Gravity Assists – Many options with Earth-Moon gravity assist tours Backflip Orbits • A backflip orbit is two flybys half a rev apart • Could be done with the Moon, Earth or Mars. Backflip orbit • Lunar backflips are nice plane because they could be used to “catch and release” asteroids • Earth backflips are nice orbits in which to construct things out of asteroids before sending them on to places like Earth- Earth or Moon orbit plane Mars cyclers 4 Example Mars Cyclers Two-Synodic-Period Cycler Three-Synodic-Period Cycler Possibly Ballistic Chen, et al., “Powered Earth-Mars Cycler with Three Synodic-Period Repeat Time,” Journal of Spacecraft and Rockets, Sept.-Oct.
    [Show full text]
  • Chapter 2: Earth in Space
    Chapter 2: Earth in Space 1. Old Ideas, New Ideas 2. Origin of the Universe 3. Stars and Planets 4. Our Solar System 5. Earth, the Sun, and the Seasons 6. The Unique Composition of Earth Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Earth in Space Concept Survey Explain how we are influenced by Earth’s position in space on a daily basis. The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas • Why is Earth the only planet known to support life? • How have our views of Earth’s position in space changed over time? • Why is it warmer in summer and colder in winter? (or, How does Earth’s position relative to the sun control the “Earthrise” taken by astronauts aboard Apollo 8, December 1968 climate?) The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System sun • Geocentric orbit hypothesis - Ancient civilizations interpreted rising of sun in east and setting in west to indicate the sun (and other planets) revolved around Earth Earth pictured at the center of a – Remained dominant geocentric planetary system idea for more than 2,000 years The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System • Heliocentric orbit hypothesis –16th century idea suggested by Copernicus • Confirmed by Galileo’s early 17th century observations of the phases of Venus – Changes in the size and shape of Venus as observed from Earth The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System • Galileo used early telescopes to observe changes in the size and shape of Venus as it revolved around the sun The Good Earth, Chapter 2: Earth in Space Earth in Space Conceptest The moon has what type of orbit? A.
    [Show full text]
  • An Assessment of Aerocapture and Applications to Future Missions
    Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission.
    [Show full text]
  • Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole
    Stellar Dynamics and Stellar Phenomena Near A Massive Black Hole Tal Alexander Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel 76100; email: [email protected] | Author's original version. To appear in Annual Review of Astronomy and Astrophysics. See final published version in ARA&A website: www.annualreviews.org/doi/10.1146/annurev-astro-091916-055306 Annu. Rev. Astron. Astrophys. 2017. Keywords 55:1{41 massive black holes, stellar kinematics, stellar dynamics, Galactic This article's doi: Center 10.1146/((please add article doi)) Copyright c 2017 by Annual Reviews. Abstract All rights reserved Most galactic nuclei harbor a massive black hole (MBH), whose birth and evolution are closely linked to those of its host galaxy. The unique conditions near the MBH: high velocity and density in the steep po- tential of a massive singular relativistic object, lead to unusual modes of stellar birth, evolution, dynamics and death. A complex network of dynamical mechanisms, operating on multiple timescales, deflect stars arXiv:1701.04762v1 [astro-ph.GA] 17 Jan 2017 to orbits that intercept the MBH. Such close encounters lead to ener- getic interactions with observable signatures and consequences for the evolution of the MBH and its stellar environment. Galactic nuclei are astrophysical laboratories that test and challenge our understanding of MBH formation, strong gravity, stellar dynamics, and stellar physics. I review from a theoretical perspective the wide range of stellar phe- nomena that occur near MBHs, focusing on the role of stellar dynamics near an isolated MBH in a relaxed stellar cusp.
    [Show full text]
  • Gravity-Assist Trajectories to Jupiter Using Nuclear Electric Propulsion
    AAS 05-398 Gravity-Assist Trajectories to Jupiter Using Nuclear Electric Propulsion ∗ ϒ Daniel W. Parcher ∗∗ and Jon A. Sims ϒϒ This paper examines optimal low-thrust gravity-assist trajectories to Jupiter using nuclear electric propulsion. Three different Venus-Earth Gravity Assist (VEGA) types are presented and compared to other gravity-assist trajectories using combinations of Earth, Venus, and Mars. Families of solutions for a given gravity-assist combination are differentiated by the approximate transfer resonance or number of heliocentric revolutions between flybys and by the flyby types. Trajectories that minimize initial injection energy by using low resonance transfers or additional heliocentric revolutions on the first leg of the trajectory offer the most delivered mass given sufficient flight time. Trajectory families that use only Earth gravity assists offer the most delivered mass at most flight times examined, and are available frequently with little variation in performance. However, at least one of the VEGA trajectory types is among the top performers at all of the flight times considered. INTRODUCTION The use of planetary gravity assists is a proven technique to improve the performance of interplanetary trajectories as exemplified by the Voyager, Galileo, and Cassini missions. Another proven technique for enhancing the performance of space missions is the use of highly efficient electric propulsion systems. Electric propulsion can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems.1,2 This technology has been demonstrated on the Deep Space 1 mission 3 − part of NASA’s New Millennium Program to validate technologies which can lower the cost and risk and enhance the performance of future missions.
    [Show full text]
  • Mscthesis Joseangelgutier ... Humada.Pdf
    Targeting a Mars science orbit from Earth using Dual Chemical-Electric Propulsion and Ballistic Capture Jose Angel Gutierrez Ahumada Delft University of Technology TARGETING A MARS SCIENCE ORBIT FROM EARTH USING DUAL CHEMICAL-ELECTRIC PROPULSION AND BALLISTIC CAPTURE by Jose Angel Gutierrez Ahumada MSc Thesis in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at the Delft University of Technology, to be defended publicly on Wednesday May 8, 2019. Supervisor: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Dr. Ryan Russell, The University of Texas at Austin Thesis committee: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Prof. dr. ir. Pieter N.A.M. Visser, TU Delft ir. Ron Noomen, TU Delft Dr. Angelo Cervone, TU Delft This thesis is confidential and cannot be made public until December 31, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover picture adapted from https://steemitimages.com/p/2gs...QbQvi EXECUTIVE SUMMARY Ballistic capture is a relatively novel concept in interplanetary mission design with the potential to make Mars and other targets in the Solar System more accessible. A complete end-to-end interplanetary mission from an Earth-bound orbit to a stable science orbit around Mars (in this case, an areostationary orbit) has been conducted using this concept. Sets of initial conditions leading to ballistic capture are generated for different epochs. The influence of the dynamical model on the capture is also explored briefly. Specific capture trajectories are then selected based on a study of their stabilization into an areostationary orbit.
    [Show full text]
  • Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
    ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture .........................................................................
    [Show full text]
  • Multi-Body Trajectory Design Strategies Based on Periapsis Poincaré Maps
    MULTI-BODY TRAJECTORY DESIGN STRATEGIES BASED ON PERIAPSIS POINCARÉ MAPS A Dissertation Submitted to the Faculty of Purdue University by Diane Elizabeth Craig Davis In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2011 Purdue University West Lafayette, Indiana ii To my husband and children iii ACKNOWLEDGMENTS I would like to thank my advisor, Professor Kathleen Howell, for her support and guidance. She has been an invaluable source of knowledge and ideas throughout my studies at Purdue, and I have truly enjoyed our collaborations. She is an inspiration to me. I appreciate the insight and support from my committee members, Professor James Longuski, Professor Martin Corless, and Professor Daniel DeLaurentis. I would like to thank the members of my research group, past and present, for their friendship and collaboration, including Geoff Wawrzyniak, Chris Patterson, Lindsay Millard, Dan Grebow, Marty Ozimek, Lucia Irrgang, Masaki Kakoi, Raoul Rausch, Matt Vavrina, Todd Brown, Amanda Haapala, Cody Short, Mar Vaquero, Tom Pavlak, Wayne Schlei, Aurelie Heritier, Amanda Knutson, and Jeff Stuart. I thank my parents, David and Jeanne Craig, for their encouragement and love throughout my academic career. They have cheered me on through many years of studies. I am grateful for the love and encouragement of my husband, Jonathan. His never-ending patience and friendship have been a constant source of support. Finally, I owe thanks to the organizations that have provided the funding opportunities that have supported me through my studies, including the Clare Booth Luce Foundation, Zonta International, and Purdue University and the School of Aeronautics and Astronautics through the Graduate Assistance in Areas of National Need and the Purdue Forever Fellowships.
    [Show full text]
  • Perturbation Theory in Celestial Mechanics
    Perturbation Theory in Celestial Mechanics Alessandra Celletti Dipartimento di Matematica Universit`adi Roma Tor Vergata Via della Ricerca Scientifica 1, I-00133 Roma (Italy) ([email protected]) December 8, 2007 Contents 1 Glossary 2 2 Definition 2 3 Introduction 2 4 Classical perturbation theory 4 4.1 The classical theory . 4 4.2 The precession of the perihelion of Mercury . 6 4.2.1 Delaunay action–angle variables . 6 4.2.2 The restricted, planar, circular, three–body problem . 7 4.2.3 Expansion of the perturbing function . 7 4.2.4 Computation of the precession of the perihelion . 8 5 Resonant perturbation theory 9 5.1 The resonant theory . 9 5.2 Three–body resonance . 10 5.3 Degenerate perturbation theory . 11 5.4 The precession of the equinoxes . 12 6 Invariant tori 14 6.1 Invariant KAM surfaces . 14 6.2 Rotational tori for the spin–orbit problem . 15 6.3 Librational tori for the spin–orbit problem . 16 6.4 Rotational tori for the restricted three–body problem . 17 6.5 Planetary problem . 18 7 Periodic orbits 18 7.1 Construction of periodic orbits . 18 7.2 The libration in longitude of the Moon . 20 1 8 Future directions 20 9 Bibliography 21 9.1 Books and Reviews . 21 9.2 Primary Literature . 22 1 Glossary KAM theory: it provides the persistence of quasi–periodic motions under a small perturbation of an integrable system. KAM theory can be applied under quite general assumptions, i.e. a non– degeneracy of the integrable system and a diophantine condition of the frequency of motion.
    [Show full text]