Performance Modelling and Simulation of a 100 Km Hybrid Sounding Rocket
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature -
Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture ......................................................................... -
Conceptual Design and Optimization of Hybrid Rockets
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2021-01-14 Conceptual Design and Optimization of Hybrid Rockets Messinger, Troy Leonard Messinger, T. L. (2021). Conceptual Design and Optimization of Hybrid Rockets (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/113011 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Conceptual Design and Optimization of Hybrid Rockets by Troy Leonard Messinger A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN MECHANICAL ENGINEERING CALGARY, ALBERTA JANUARY, 2021 © Troy Leonard Messinger 2021 Abstract A framework was developed to perform conceptual multi-disciplinary design parametric and optimization studies of single-stage sub-orbital flight vehicles, and two-stage-to-orbit flight vehicles, that employ hybrid rocket engines as the principal means of propulsion. The framework was written in the Python programming language and incorporates many sub- disciplines to generate vehicle designs, model the relevant physics, and analyze flight perfor- mance. The relative performance (payload fraction capability) of different vehicle masses and feed system/propellant configurations was found. The major findings include conceptually viable pressure-fed and electric pump-fed two-stage-to-orbit configurations taking advan- tage of relatively low combustion pressures in increasing overall performance. -
Suborbital Platforms and Range Services (SPARS)
Suborbital Capabilities for Science & Technology Small Missions Workshop @ Johns Hopkins University June 10, 2019 Mike Hitch, Giovanni Rosanova Goddard Space Introduction Flight Center AGENDAWASP OPIS ▪ Purpose ▪ History & Importance of Suborbital Carriers to Science ▪ Suborbital Platforms ▪ Sounding Rockets ▪ Balloons (brief) ▪ Aircraft ▪ SmallSats ▪ WFF Engineering ▪ Q & A P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 2 Goddard Space Purpose of the Meeting Flight Center Define theWASP OPISutility of Suborbital Carriers & “Small” Missions ▪ Sounding rockets, balloons and aircraft (manned and unmanned) provide a unique capability to scientists and engineers to: ▪ Allow PIs to enhance and advance technology readiness levels of instruments and components for very low relative cost ▪ Provide PIs actual science flight opportunities as a “piggy-back” on a planned mission flight at low relative cost ▪ Increase experience for young and mid-career scientists and engineers by allowing them to get their “feet wet” on a suborbital mission prior to tackling the much larger and more complex orbital endeavors ▪ The Suborbital/Smallsat Platforms And Range Services (SPARS) Line Of Business (LOB) can facilitate prospective PIs with taking advantage of potential suborbital flight opportunities P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 3 Goddard Space Value of Suborbital Research – What’s Different? Flight Center WASP OPIS Different Risk/Mission Assurance Strategy • Payloads are recovered and refurbished. • Re-flights are inexpensive (<$1M for a balloon or sounding rocket vs >$10M - 100M for a ELV) • Instrumentation can be simple and have a large science impact! • Frequent flight opportunities (e.g. “piggyback”) • Development of precursor instrument concepts and mature TRLs • While Suborbital missions fully comply with all Agency Safety policies, the program is designed to take Higher Programmatic Risk – Lower cost – Faster migration of new technology – Smaller more focused efforts, enable Tiger Team/incubator experiences. -
What's Inside... in Brief
National Aeronautics and Space Administration What’s inside... 2 Features 5 Integration and Testing 4 1 3 2 2015 6 Picture Place 7 Other News 8 Schedule & Miscellanea Sounding Rockets Program Office 46.012 UO Koehler - RockSat-X was succesfully launched In Brief... from Wallops Island on August 12, 2015. The new Black Brant Mk 4 vehicle will fly for the first time in October 2015 from Wallops Island. The payload carries several technology test experi- ments and instruments. Payload teams are preparing for the coming Norway campaign. Two rockets will be launched from Andoya with the launch window opening on November 27. The Multiple User Suborbital Instru- ment Carrier (MUSIC) payload will be launched from Wallops Island in Oc- tober on a Terrier-Improved Malemute rocket. The sounding rockets program will cel- ebrate 45-years at Wallops on Novem- ber 30, 2015. More on page 7. A very busy flight schedule is in prog- ress. The Sounding Rockets Program has 11 missions on schedule during the Students from Hawaii with their experiment after the successful flight. period September through November. The 46.012 UO RockSat-X mission was launched from Wallops Island, VA on Au- Three have been successfully complet- gust 12, 2015. RockSat-X is the most advanced of three student flight programs ed and eight remain. managed by Colorado Space Grant Consortium and supported by NASA. RockSat- X provides participating University faculty and students an opportunity to build, RockSat-X continued... test and fly an experiment of their own University Of Hawaii Community College design onboard a Terrier-Improved System University of Nebraska Lincoln (UNL) Malemute sounding rocket and in- Project Imua The experiment from the University of cludes full featured sounding rocket The primary mission goal for Project Nebraska Lincoln compared buoyant support systems, such as telemetry, Imua is to encourage UHCC students to convection on the ground in the pres- attitude control and recovery. -
Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1. -
19760011102.Pdf
XR-75-391 Contract 954205 MARS SURFACE SAMPLE RETURN TRADEOFF STUDIES Final Report October 1975 Approved Technical Director This report was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100. MARTIN MARIETTA CCRPORATION DENVER DIVISION Denver, Colorado 80201 Ihis report docllr~_ntsthe results of four specific study tasks defined by the JPL seady manager as critical to the evolving understanding of the lhrs Surface Sample Beturn (LISSR) mission. Task 1 campares the Mars mission opportunities in 1981, 1983184, 1986, 1988, and 1990 to detennine which mission modes are possible and appropriate for each. Task 2 mines the design features of the hardware systems used to return the saaple, in the Mars orbit rendezvous mode, to identify ways in which the probability of back contamination can be minimized. Task 3 loolcs into the hardware and performance trade offs between the options of direct entry of the returning sample capsule at Earth and the orbital capture of that capsule for recovery by the Shuttle. Task 4 explores the possibilities for increasing the landed weight at Mars, beyond that possible with zfnimally modified Viking lander, to support HSSR missi-n modes involvk-g heavier systems. Bode technical mesroranda were prepared in accordance with the Contract Schedule, Article 1, Paragraph a. (31, of JPL Contract No. 954205, Mars Surface Sample Return (lSSR) Tradeoff Studies. A technical memorandum is submitted for each of the four tasks in the Statement of Work as follows: Task 1: Compile mission performance data for the leading mission mode candidates for the 1981, 1984, 1986, 1988 and 1990 opportunities. -
Desind Finding
NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application. -
Preliminary Design of Nuclear Electric Propulsion Missions to the Outer Planets
Preliminary Design of Nuclear Electric Propulsion Missions to the Outer Planets Chit Hong Yam,* T. Troy McConaghy,† K. Joseph Chen* and James M. Longuski‡ School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907-2023 Nuclear electric propulsion is expected to open new doors in deep space exploration. We study direct rendezvous missions to the outer planets which employ a constant-thrust, constant specific-impulse engine. We also consider how gravity assist can augment the capability of nuclear electric propulsion. We present numerical examples of gravity-assist missions to the outer planets, which use an engine similar to that of the Jupiter Icy Moons Orbiter. For example, in an Earth-Venus-Earth-Jupiter-Pluto mission, the spacecraft launches with a V∞ of 2.2 km/s and rendezvous with Pluto in 10.5 years, with a propellant mass fraction of 50%. We demonstrate the benefit of using intermediate gravity-assist bodies (e.g. Venus, Earth and Mars) to decrease both mission duration and propellant cost. Nomenclature 2 a0 = initial acceleration of the spacecraft, mm/s 2 g = standard acceleration due to gravity, m/s Isp = specific impulse, s m = propellant mass flow rate, mg/s mf = final spacecraft mass, kg m0 = initial spacecraft mass, kg P = power, kW RJ = radius of Jupiter T = engine thrust, N V∞ = hyperbolic excess speed, km/s ∆V = magnitude of a change in velocity, km/s η = overall engine efficiency I. Introduction N ambitious mission to Jupiter is being planned – the Jupiter Icy Moons Orbiter1,2 (JIMO) mission. Although A the details are uncertain, the JIMO spacecraft will be massive (as much as 20,000 kg after escape at Earth) and will use nuclear electric propulsion3 (total engine power of about 100 kW) with a high specific impulse (about 6,000 s). -
Spiral Trajectories in Global Optimisation of Interplanetary and Orbital Transfers Final Report
Spiral Trajectories in Global Optimisation of Interplanetary and Orbital Transfers Final Report Authors: M. Vasile, O. Schütze, O. Junge, G. Radice, M. Dellnitz Affiliation: University of Glasgow, Department of Aerospace Engineering, James Watt South Building, G12 8QQ, Glasgow,UK ESA Research Fellow/Technical Officer: Dario Izzo Contacts: Massimiliano Vasile Tel: ++44 141-330-6465 Fax: ++44-141-330-5560 e-mail: [email protected] Dario Izzo, Ph.D., MSc Tel: +31(0)71 565 3511 Fax: +31(0)71 565 8018 e-mail: [email protected] Ariadna ID: AO4919 05/4106 Study Duration: 4 months Available on the ACT website http://www.esa.int/act Contract Number: 19699/06/NL/HE Table of Contents 1 Introduction...................................... ..................... 2 1.1 StudyObjectives ................................... ................ 3 2 Trajectory Model and Problem Formulation . ................... 5 2.1 The Exponential Sinusoid ............................ ................ 6 2.2 Gravity Assist Model for the Exponential Sinusoid . ................ 7 2.3 Problem Formulation............................... ................. 7 3 ProblemAnalysis.................................... ................... 8 3.1 Search Space Structure................................ .............. 8 3.2 Upper limit on k2 ................................................... 8 3.3 Solution of Lambert’s problem with the Exponential Sinusoid ............... 12 3.4 Convergence Analysis ............................... ................ 13 4 Optimality Analysis ................................ -
UC3M Analysis of Orbital Relay Stations for Orbital Energy
Analysis of Orbital Relay Stations for Orbital Energy Accumulation Author: Juan José García Ortiz Tutor: Mario Merino Martínez University Carlos III Madrid NANOSTAR consortium 1 Analysis of Orbital Relay Stations for Orbital Energy Accumulation BSc Aerospace Engineering Abstract Space activities and attainability are constrained nowadays due to the high cost of rocketry employed put payloads in orbit. This study aims to design, analyze and optimize a network of orbital relay stations that can act as orbital energy accumulators to support other space missions. The sustainability of such network lies in a balance between payloads being orbited and deorbited. To test the viability of the proposed network, simulated missions are implemented in a programming environment in a way that can reproduce numerically the behaviour of the network in missions of increasing complexity. The design optimization of such missions is then performed assisted with a built-in genetic algorithm. The results gathered prove that the energetic balance can be achieved providing an operation with minimal degradation. Proper mission design and station orbit spacing are key in defining suitable design conditions that yield the best case performance and the genetic algorithm is applicable to reduce the losses in off-design operating conditions. 1 Analysis of Orbital Relay Stations for Orbital Energy Accumulation BSc Aerospace Engineering Contents 1 Introduction 3 1.1 Proposed study and design objectives . .4 2 State of the art 5 3 Model and numerical implementation 7 3.1 Mathematical model and assumptions . .7 3.2 Problem variables . .7 3.3 Cowell orbital propagator . .8 3.4 Targeting method: Lambert algorithm . -
Acta Futura 11 (2018) 25-35 Acta DOI: 10.5281/Zenodo.1139152 Futura
Acta Futura 11 (2018) 25-35 Acta DOI: 10.5281/zenodo.1139152 Futura GTOC9: Results from the Jet Propulsion Laboratory (team JPL) ANASTASSIOS PETROPOULOS*,DANIEL GREBOW,DREW JONES,GREGORY LANTOINE, AUSTIN NICHOLAS,JAVIER ROA,JUAN SENENT,JEFFREY STUART,NITIN ARORA,THOMAS PAVLAK, TRY LAM,TIMOTHY MCELRATH,RALPH RONCOLI,DAVID GARZA,NICHOLAS BRADLEY, DAMON LANDAU,ZAHI TARZI,FRANK LAIPERT,EUGENE BONFIGLIO,MARK WALLACE,JON SIMS JET PROPULSION LABORATORY,CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DR., PASADENA CA 91109, USA Abstract. The removal of 123 pieces of debris 1 Introduction from the Sun-synchronous LEO environment is ac- complished by a 10-spacecraft campaign wherein The 9th Global Trajectory Optimisation Competition the spacecraft, flying in succession over an 8-yr (GTOC9) considered the problem of debris removal period, rendezvous with a series of the debris ob- from the Sun-synchronous, Low-Earth-Orbit environ- jects, delivering a de-orbit package at each one ment [1]. In this paper we describe the methods devel- before moving on to the next object by means oped at the Jet Propulsion Laboratory to tackle the prob- of impulsive manoeuvres. This was the GTOC9 problem, as posed by the European Space Agency. lem in the short, one-month competition timeframe. The methods used by the Jet Propulsion Labo- We also present the results obtained, both the submit- ratory team are described, along with the win- ted winning solution which removed all 123 debris ob- ning solution found by the team. Methods include jects in a campaign of ten missions, and results obtained branch-and-bound searches that exploit the natural shortly after the close of the competition.