Advancing Torpor Inducing Transfer Habitats for Human Stasis to Mars NIAC Phase II Final Report Spaceworks Enterprises, Inc

Total Page:16

File Type:pdf, Size:1020Kb

Advancing Torpor Inducing Transfer Habitats for Human Stasis to Mars NIAC Phase II Final Report Spaceworks Enterprises, Inc Advancing Torpor Inducing Transfer Habitats for Human Stasis to Mars NIAC Phase II Final Report SpaceWorks Enterprises, Inc. (SEI) ADVANCING TORPOR INDUCING TRANSFER HABITATS FOR HUMAN STASIS TO MARS NASA INNOVATIVE ADVANCED CONCEPTS (NIAC) PHASE II FINAL REPORT 30 June 2018 Version 1.0 Grant Number: NNX16AL30G and 80NSSC18K0033 Prepared by: J. BRADFORD, B. MERREL, M. SCHAFFER, C. WILLIAMS, AND D. TALK SpaceWorks Enterprises, Inc. (SEI) 1050 Crown Pointe Parkway, Suite 1400 Atlanta, GA 30338 (770) 379-8000 Office, (770) 379-8001 Fax www.spaceworks.aero Prepared for: National Aeronautics and Space Administration (NASA) Headquarters Space Technology Mission Directorate (STMD) 300 E. Street, SW Washington, D.C. 20546-0001 PUBLIC RELEASE IS AUTHORIZED. i Advancing Torpor Inducing Transfer Habitats for Human Stasis to Mars NIAC Phase II Final Report SpaceWorks Enterprises, Inc. (SEI) Table of Contents 1. Executive Summary ......................................................................................................................................................... 1 2. Introduction and Rationale ................................................................................................................................................ 3 2.1. Introduction .......................................................................................................................................................... 3 2.2. Rationale ............................................................................................................................................................. 4 2.3. Technology .......................................................................................................................................................... 6 3. Background ..................................................................................................................................................................... 7 3.1. Hibernation .......................................................................................................................................................... 7 3.2. Therapeutic Hypothermia (TH) ............................................................................................................................. 7 3.3. Hypothermia ........................................................................................................................................................ 8 3.3.1. Method of Action ............................................................................................................................................. 8 3.3.2. Methods of Cooling ......................................................................................................................................... 9 4. Medical Approach ...........................................................................................................................................................11 4.1. Overview ............................................................................................................................................................11 4.2. Method of Induction.............................................................................................................................................11 4.3. Intravenous (IV) Access ......................................................................................................................................14 4.4. Nutritional Approach............................................................................................................................................15 4.5. Waste Management ............................................................................................................................................16 4.6. Monitoring and Evaluation ...................................................................................................................................17 4.7. Potential Medical Challenges ..............................................................................................................................18 4.8. Proposed Induction Protocol ................................................................................................................................24 4.8.1. Stage 1: Pre-Flight .........................................................................................................................................24 4.8.1.1. Training ....................................................................................................................................................24 4.8.1.2. Exposure to Torpor Cycles ........................................................................................................................24 4.8.1.3. Establish Permanent IV and Nutritional Access ..........................................................................................25 4.8.2. Stage 2: Crew Preparation .............................................................................................................................25 4.8.2.1. Skin Preparation .......................................................................................................................................25 4.8.2.2. Bowel Preparation .....................................................................................................................................25 4.8.2.3. Perform Systems Test on Torpor Induction Systems ..................................................................................25 4.8.2.4. Test Access to Port-a-Cath and PEG Tube: ...............................................................................................25 4.8.3. Stage 3: Initiation ...........................................................................................................................................25 4.8.3.1. Torpor Habitat ...........................................................................................................................................25 4.8.3.2. Place Foley Catheter, Fecal Collection system, and OG/NG Tube ..............................................................25 4.8.3.3. Apply Monitors ..........................................................................................................................................26 4.8.3.4. Induce Moderate Sedation ........................................................................................................................26 4.8.3.5. Induction of Hypothermia...........................................................................................................................26 4.8.4. Stage 4: Torpor Maintenance .........................................................................................................................26 4.8.4.1. Evaluation of Vital Signs and Blood chemistry ............................................................................................26 4.8.4.2. Nutrition ....................................................................................................................................................26 4.8.4.3. Infection Control ........................................................................................................................................26 4.8.4.4. Thrombosis Prevention .............................................................................................................................27 4.8.4.5. Monitoring and Periodic Care ....................................................................................................................27 4.8.5. Stage 5: Torpor Reversal ...............................................................................................................................27 4.8.5.1. Rewarming ...............................................................................................................................................27 4.8.5.2. Wakening .................................................................................................................................................27 4.8.5.3. Discontinue Monitoring, Antibiotics and Anticoagulation .............................................................................27 4.8.5.4. Resume Normal Diet (if available) .............................................................................................................27 4.8.5.5. Resume Normal Activity ............................................................................................................................27 5. Impact on NASA’s Human Research Program (HRP) .......................................................................................................28 5.1. Short-term and Long-term Effects of Radiation Exposure and SPEs .....................................................................28 5.2. Spaceflight-Induced Intracranial Hypertension/Vision Alterations ..........................................................................29 5.3. Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders, and the Risk of Performance and Behavioral Health Decrements ............................................................................................................................................................29 5.4. Adverse Outcomes Due to Sleep Loss, Circadian Desynchronization, and Work Overload ....................................29 5.5. Risk of Impaired Performance Due to Reduced Muscle Mass, Strength & Endurance ...........................................30
Recommended publications
  • Preparation of Papers for AIAA Journals
    ASCEND 10.2514/6.2020-4000 November 16-18, 2020, Virtual Event ASCEND 2020 Cryogenic Fluid Management Technologies Enabling for the Artemis Program and Beyond Hans C. Hansen* and Wesley L. Johnson† NASA Glenn Research Center, Cleveland, Ohio, 44135, USA Michael L. Meyer‡ NASA Engineering Safety Center, Cleveland, Ohio, 44135, USA Arthur H. Werkheiser§ and Jonathan R. Stephens¶ NASA Marshall Space Flight Center, Huntsville, Alabama, 35808, USA NASA is endeavoring on an ambitious return to the Moon and eventually on to Mars through the Artemis Program leveraging innovative technologies to establish sustainable exploration architectures collaborating with US commercial and international partners [1]. Future NASA architectures have baselined cryogenic propulsion systems to support lunar missions and ultimately future missions to Mars. NASA has been investing in maturing CFM active and passive storage, transfer, and gauging technologies over the last decade plus primarily focused on ground development with a few small- scale microgravity fluid experiments. Recently, NASA created a Cryogenic Fluid Management (CFM) Technology Roadmap identifying the critical gaps requiring further development to reach a technology readiness level (TRL) of 6 prior to infusion to flight applications. To address the technology gaps the Space Technology Mission Directorate (STMD) strategically plans to invest in a diversified CFM portfolio approach through ground and flight demonstrations, collaborating with international partners, and leveraging Public Private Partnerships (PPPs) opportunities with US industry through Downloaded by Michele Dominiak on December 23, 2020 | http://arc.aiaa.org DOI: 10.2514/6.2020-4000 the Tipping Point and Announcement of Collaborative Opportunities (ACO) solicitations. Once proven, these system capabilities will enable the high performing cryogenic propellant systems needed for the Artemis Program and beyond.
    [Show full text]
  • Why NASA's Planet-Hunting Astrophysics Telescope Is an Easy Budget Target, and What Defeat Would Mean PAGE 24
    Q & A 12 ASTRONAUT’S VIEW 20 SPACE LAUNCH 34 Neil deGrasse Tyson A realistic moon plan SLS versus commercial SPECIAL REPORT SPACE DARK ENERGY DILEMMA Why NASA’s planet-hunting astrophysics telescope is an easy budget target, and what defeat would mean PAGE 24 APRIL 2018 | A publication of the American Institute of Aeronautics andd Astronautics | aeroaerospaceamerica.aiaa.orgerospaceamerica.aiaa.org 9–11 JULY 2018 CINCINNATI, OH ANNOUNCING EXPANDED TECHNICAL CONTENT FOR 2018! You already know about our extensive technical paper presentations, but did you know that we are now offering an expanded educational program as part of the AIAA Propulsion and Energy Forum and Exposition? In addition to our pre-forum short courses and workshops, we’ve enhanced the technical panels and added focused technical tutorials, high level discussion groups, exciting keynotes and more. LEARN MORE AND REGISTER TODAY! For complete program details please visit: propulsionenergy.aiaa.org FEATURES | April 2018 MORE AT aerospaceamerica.aiaa.org 20 34 40 24 Returning to Launching the Laying down the What next the moon Europa Clipper rules for space Senior research scientist NASA, Congress and We asked experts in for WFIRST? and former astronaut the White House are space policy to comment Tom Jones writes about debating which rocket on proposed United NASA’s three upcoming space what it would take to should send the probe Nations guidelines deliver the funds and into orbit close to this for countries and telescopes are meant to piece together political support for the Jovian moon. companies sending some heady puzzles, but the White Lunar Orbital Outpost- satellites and other craft House’s 2019 budget proposal would Gateway.
    [Show full text]
  • Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
    ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture .........................................................................
    [Show full text]
  • Interstellar Probe on Space Launch System (Sls)
    INTERSTELLAR PROBE ON SPACE LAUNCH SYSTEM (SLS) David Alan Smith SLS Spacecraft/Payload Integration & Evolution (SPIE) NASA-MSFC December 13, 2019 0497 SLS EVOLVABILITY FOUNDATION FOR A GENERATION OF DEEP SPACE EXPLORATION 322 ft. Up to 313ft. 365 ft. 325 ft. 365 ft. 355 ft. Universal Universal Launch Abort System Stage Adapter 5m Class Stage Adapter Orion 8.4m Fairing 8.4m Fairing Fairing Long (Up to 90’) (up to 63’) Short (Up to 63’) Interim Cryogenic Exploration Exploration Exploration Propulsion Stage Upper Stage Upper Stage Upper Stage Launch Vehicle Interstage Interstage Interstage Stage Adapter Core Stage Core Stage Core Stage Solid Solid Evolved Rocket Rocket Boosters Boosters Boosters RS-25 RS-25 Engines Engines SLS Block 1 SLS Block 1 Cargo SLS Block 1B Crew SLS Block 1B Cargo SLS Block 2 Crew SLS Block 2 Cargo > 26 t (57k lbs) > 26 t (57k lbs) 38–41 t (84k-90k lbs) 41-44 t (90k–97k lbs) > 45 t (99k lbs) > 45 t (99k lbs) Payload to TLI/Moon Launch in the late 2020s and early 2030s 0497 IS THIS ROCKET REAL? 0497 SLS BLOCK 1 CONFIGURATION Launch Abort System (LAS) Utah, Alabama, Florida Orion Stage Adapter, California, Alabama Orion Multi-Purpose Crew Vehicle RL10 Engine Lockheed Martin, 5 Segment Solid Rocket Aerojet Rocketdyne, Louisiana, KSC Florida Booster (2) Interim Cryogenic Northrop Grumman, Propulsion Stage (ICPS) Utah, KSC Boeing/United Launch Alliance, California, Alabama Launch Vehicle Stage Adapter Teledyne Brown Engineering, California, Alabama Core Stage & Avionics Boeing Louisiana, Alabama RS-25 Engine (4)
    [Show full text]
  • The Future of Commercial Space in Georgia 19 Oct 2017 AEROSPACE – KEY INDUSTRY for GEORGIA CENTER of INNOVATION for AEROSPACE
    The Future of Commercial Space In Georgia 19 Oct 2017 AEROSPACE – KEY INDUSTRY FOR GEORGIA CENTER OF INNOVATION FOR AEROSPACE Our Center’s Mission Provide the technical industry expertise, collaborative research, and partnerships to help the State's aerospace industry to Connect, Compete and Grow globally. Create More Georgia Aerospace Jobs! WHAT IS AEROSPACE? Aerospace Product Economic Life Cycle R&D Testing Mfg Training Operations Maintenance Georgia uses “Aerospace” as inclusive term covering the lifecycle of activities for vehicles that fly in the air or in space. SPACE Vector Aerospace Test • Georgia has a growing space sector, and is home to the following companies: Launch at the Proposed Spaceport Camden • Honeywell Facility (August 3, 2017) • IntelSat • Lockheed Martin Space Systems • SpaceWorks Enterprises • Generation Orbit Launch Services • Blink Astro • Terminal Velocity Aerospace • ViaSat (one of Georgia’s top 20 aerospace employers) • Tyvak • And a number of additional companies support space projects as part of their portfolio • Georgia Tech has a robust space research portfolio • UGA and KSU both also have small satellite programs WE HAVE A GREAT FOUNDATION TO BUILD COMMERCIAL SPACE IN GEORGIA • We have over 800 aerospace companies that add $64B to the economy • 99,000 direct aerospace jobs • Aircraft and aircraft parts are the #1 export by $ in Georgia and have been for 10 years • Georgia is number 3 in aviation MRO, a skill base that transfers to commercial space operations • PriceWaterhouseCoopers named Georgia #1 in
    [Show full text]
  • SOAR 2018 Aerospace and Defense Thank You to Our Sponsors Platinum Level
    SOAR 2018 Aerospace and Defense Thank You to Our Sponsors Platinum Level Gold Level Reception Lunch Silver Level FASTPITCH ROOM ASSIGNMENTS • 238A: Siemens • 238B: L-3 TCS • 239: Meggitt Training Systems • 150: Defense Logistics Agency • 152: Robins AFB Small Business Office • 154: FAA • 121: Fokker Aerostructures • 122: Lockheed Martin POLL EVERYWHERE INSTRUCTIONS • Download the Poll Everywhere app (free on both Apple and Google Play) • Open the app • Join the presentation soar2018 • Answer the questions! POLL EVERYWHERE • What types of supplier programming interest you? • What would you describe as the biggest risk area for your business? • What is your biggest workforce challenge: • Do you export your product? • If you Export, which of these markets do you export to? • If you do not export your products, why not? OUR MISSION CENTER OF INNOVATION FOR AEROSPACE • The Center of Innovation for Aerospace provides the technical industry expertise, collaborative research and partnerships to help the state’s aerospace industry connect, compete and grow CURLING STONES AND SWEEPERS sweeper GLOBAL AEROSPACE MARKET Boeing current market outlook 2017-2035 • 41,030 new aircraft deliveries • Regional Jets, Single Aisle, Both Small & Large Wide body and Freighters • 8,640 in North America, 16,050 in Asia-Pacific • About 40% replacement, and 60% growth • Represents $6.1 Trillion Market Value • 4.7% Traffic growth • 3.5% Fleet growth GLOBAL AEROSPACE MARKET AIRBUS GLOBAL MARKET FORECAST • 3.7 Billion people traveled by air in 2016 • Air Transport had
    [Show full text]
  • Georgia Space Grant Consortium Lead Institution: Georgia Institute of Technology Director: Dr
    The National Space Grant Office requires two annual reports, the Annual Performance Data Report (APD – this document) and the Office of Education Performance Measurement System (OEPM) report. The former is primarily narrative and the latter data intensive. Because the reporting timeline cycles are different, data in the two reports may not necessarily agree at the time of report submission. OEPM data are used for official reporting. Georgia Space Grant Consortium Lead Institution: Georgia Institute of Technology Director: Dr. Stephen Ruffin Telephone Number: 404 894-0521 Consortium URL: http://www.gasgc.org Grant Number: NNX10AR61H PROGRAM DESCRIPTION The National Space Grant College and Fellowship Program consists of 52 state-based, university-led Space Grant Consortia in each of the 50 states plus the District of Columbia and the Commonwealth of Puerto Rico. Annually, each consortium receives funds to develop and implement student fellowships and scholarships programs; interdisciplinary space-related research infrastructure, education, and public service programs; and cooperative initiatives with industry, research laboratories, and state, local, and other governments. Space Grant operates at the intersection of NASA’s interest as implemented by alignment with the Mission Directorates and the state’s interests. Although it is primarily a higher education program, Space Grant programs encompass the entire length of the education pipeline, including elementary/secondary and informal education. The Georgia Space Grant Consortium is a Designated Consortium funded at a level of $575,000 for fiscal year 2014. PROGRAM GOALS Fellowships and Scholarships Goal 1: Deliver a competitive scholarship/fellowship program that promotes STEM excellence in students and faculty. Objective 1.1 Ensure competitive distribution of scholarship/fellowship funds.
    [Show full text]
  • Presented at the 2019 ICEAA Professional Development & Training Workshop
    Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com An Analytic Explanation for Vertical Integration Behavior in the Marketplace Caleb Williams & Jack Semrau Additional Contributors: Stephanie DelPozzo, Bill Doncaster, Jon Wallace SpaceWorks Enterprises, Inc. 1050 Crown Pointe Parkway, Suite #1400, Atlanta, GA 30338 [email protected] ABSTRACT Vertical integration is a costly and difficult-to-reverse strategy with significant risks, yet it has experienced a sharp rise in popularity within the satellite manufacturing sector over the last decade. This paper explores how commercial parametric cost estimating tools can be used in combination with business-case analysis to understand why firms are increasingly pursuing vertical integration strategies in this sector. The authors build on previous research presented at the NASA Cost & Schedule Symposium, further exploring how these types of tools can be used to identify motivations for vertical integration. Picking up where the initial research left off, this analysis uses financial return, rather than cost, to evaluate firm decisions to vertically integrate. Specifically, the new research evaluates the expected net present value (NPV) for a hypothetical satellite constellation when using two different acquisition approaches (“traditional” vs. “vertically integrated”). Results indicate that when considering financial return, the breakeven constellation size between the two approaches shifts outward by as much as 30 – 50% versus a comparison based on cost alone. These results provide greater context around firm decisions to vertically integrate in this sector and help to explain several inconsistencies seen in the previous research effort. Finally, this paper also demonstrates how the framework for this analysis is extensible to modeling vertical integration decisions in other manufacturing sectors.
    [Show full text]
  • Georgia Space Update
    GEORGIA SPACE UPDATE NDIA-GEORGIA CHAPTER SPACE COMMITTEE STRENGTH THROUGH INDUSTRY AND TECHNOLOGY JANUARY 2016 Spaceport Camden Continues Forward About Camden County: Located in the extreme southeast corner of Georgia, Camden County truly is “Georgia’s Coastal Community FAA Spaceport Camden Public Meeting Held of Choice.” Originally formed in 1777, Camden County is best known for its rich history, natural scenic beauty and Southern CAMDEN COUNTY, Fla. — The public was invited to attend the hospitality. Our vision is helping to make this the best place to live Federal Aviation Administration's public scoping meeting for by preserving and enhancing the history and quality of life, while the creation of a spaceport in Camden County near Woodbine, promoting smart growth and providing an efficient, effective and officials said. responsive government. The meeting was held Monday, December 7 between 5 p.m. and About Spaceport Camden: Our Vision is to develop a successful 9 p.m. with over 400 in attendance in Kingsland, GA. The event world class spaceport through a public-private partnership that was planned to end at 8:00, but there were so many people establishes Camden County as the Commercial Space Center of the attending who wanted to speak that it was extended an United States. Our Mission is to create the premier spaceport additional hour. strategically positioned to provide economic diversity with a competitive advantage for the space sector, Camden County, the There was an open house workshop period for the first hour State of Georgia and the United States of America. For more where residents could submit written comments.
    [Show full text]
  • A Rapid Global Effects Capability
    ARapid Global Effects Capability Daniel Baltrusaitus, Major, USAF AIR UNIVERSITY AIR COMMAND AND STAFF COLLEGE A Rapid Global Effects Capability daniel baltrusaitus, major, usaf Wright Flyer Paper No. 62 Air University Press Curtis E. LeMay Center for Doctrine Development and Education Maxwell Air Force Base, Alabama Accepted by Air University Press May 2016 and published April 2019. Project Editor Dr. Stephanie Havron Rollins Copy Editor Carolyn Broadnax Cover Art, Book Design, and Illustrations Leslie Fair Composition and Prepress Production Megan N. Hoehn AIR UNIVERSITY PRESS Director, Air University Press Lr Col Darin Gregg Air University Press Disclaimer 600 Chennault Circle, Building 1405 Opinions, conclusions, and recommendations expressed or Maxwell AFB, AL 36112-6010 implied within are solely those of the author and do not necessar- https://www.airuniversity.af.edu/AUPress/ ily represent the views of the Department of Defense, the United States Air Force, the Air Education and Training Command, the Facebook: Air University, or any other US government agency. Cleared for https://www.facebook.com/AirUnivPress public release: distribution unlimited. and This Wright Flyer Paper and others in the series are available elec- tronically at the AU Press website: https://www.airuniversity.af Twitter: https://twitter.com/aupress .edu/AUPress/Wright-Flyers/. Air University Press Contents List of Illustrations and Tables iv Foreword v Abstract vi Acknowledgments vii Purpose 1 Problem Statement 1 Thesis Statement 1 Industry Research 5 Air Force Internal Policy Implications of Development 8 USAF Wargame Results 10 Deputy Secretary of Defense Work’s Five Points of Interest and The Future 11 External Policy Implications of Development 15 Policy Implications Concerning Near- Peer Adversaries 20 Analysis 26 Recommendations 26 Notes 27 Abbreviations 31 Bibliography 32 iii List of Illustrations Figures 1.
    [Show full text]
  • Lunar Extraction for Extra-Terrestrial Prospecting CALTECH SPACE
    LEEP Lunar Extraction for Extra-terrestrial Prospecting CALTECH SPACE CHALLENGE - 2017 LEEP CALTECH | GALCIT | JPL | AIRBUS LEEP The Caltech Space Challenge The Caltech Space Challenge is a 5-day international student space mission design competition. The Caltech Space Challenge was started in 2011 by Caltech graduate students Prakhar Mehrotra and Jonathan Mihaly, hosted by the Keck Institute for Space Studies (KISS) and the Graduate Aerospace Laboratories of Caltech (GALCIT). Participants of the 2011 challenge designed a crewed mission to a Near- Earth Object (NEO). The second edition of the Caltech Space Challenge, held in 2013, dealt with developing a crewed mission to a Martian moon. In 2015, the third Caltech Space Challenge was held, during which participants were challenged to design a mission that would land humans on an asteroid brought into Lunar orbit, extract the asteroid’s resources and demonstrate their use. For the Caltech Space Challenge, 32 participants are selected from a large pool of applicants and invited to Caltech during Caltech’s Spring break. They are divided into two teams of 16 and given the mission statement during the first day of the competition. They have 5 days to design the best mission plan, which they present on the final day to a jury of industry experts. Jurors then select the winning team. Lectures from engineers and scientists from prestigious space companies and agencies (Airbus, SpaceX, JPL, NASA, etc.) are given to the students to help them solve the different issues of the proposed mission. This confluence of people and resources is a unique opportunity for young and enthusiastic students to work with experienced professionals in academia, industry, and national laboratories.
    [Show full text]
  • NASA's Space Launch System: Deep-Space Delivery for Smallsats
    SSC17-IV-02 NASA’s Space Launch System: Deep-Space Delivery for Smallsats Dr. Kimberly F. Robinson, George Norris NASA Space Launch System Program NASA Marshall Space Flight Center XP50, Huntsville, AL; 1.256.544.5182 [email protected] ABSTRACT Designed for human exploration missions into deep space, NASA’s Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). Planning is underway for smallsat accommodations on future configurations of the vehicle, which will present additional opportunities. This paper will include an overview of the SLS vehicle and its capabilities, including the current status of the rocket’s progress toward its first launch. It will also explain the current and future opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 and a discussion of future capabilities. INTRODUCTION Designed to deliver the capabilities needed to enable human exploration of deep space, NASA’s new Space Launch System rocket is making progress toward its first launch. NASA is making investments to expand the science and exploration capability of the SLS by leveraging excess performance to deploy small satellites.
    [Show full text]