1989Aj 98. .7663 the Astronomical Journal

Total Page:16

File Type:pdf, Size:1020Kb

1989Aj 98. .7663 the Astronomical Journal .7663 THE ASTRONOMICAL JOURNAL VOLUME 98, NUMBER 3 SEPTEMBER 1989 98. THE IRAS BRIGHT GALAXY SAMPLE. IV. COMPLETE IRAS OBSERVATIONS B. T. Soifer, L. Boehmer, G. Neugebauer, and D. B. Sanders Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125 1989AJ Received 15 March 1989; revised 15 May 1989 ABSTRACT Total flux densities, peak flux densities, and spatial extents, are reported at 12, 25, 60, and 100 /¿m for all sources in the IRAS Bright Galaxy Sample. This sample represents the brightest examples of galaxies selected by a strictly infrared flux-density criterion, and as such presents the most complete description of the infrared properties of infrared bright galaxies observed in the IRAS survey. Data for 330 galaxies are reported here, with 313 galaxies having 60 fim flux densities >5.24 Jy, the completeness limit of this revised Bright Galaxy sample. At 12 /¿m, 300 of the 313 galaxies are detected, while at 25 pm, 312 of the 313 are detected. At 100 pm, all 313 galaxies are detected. The relationships between number counts and flux density show that the Bright Galaxy sample contains significant subsamples of galaxies that are complete to 0.8, 0.8, and 16 Jy at 12, 25, and 100 pm, respectively. These cutoffs are determined by the 60 pm selection criterion and the distribution of infrared colors of infrared bright galaxies. The galaxies in the Bright Galaxy sample show significant ranges in all parameters measured by IRAS. All correla- tions that are found show significant dispersion, so that no single measured parameter uniquely defines a galaxy’s infrared properties. Galaxies selected to be “warm” and “cold” in the observed ratio of flux densities at 25 and 60 pm can be distinguished in several of the infrared properties. For the galaxies in the Bright Galaxy sample both the ratio of flux densities ^(60 pm)/Sv(\0D pm) and 5^(12 pm)/ Sv{25 pm) correlate with infrared luminosity, and more significantly with the ratio of infrared-to- visible flux. The relation between these two ratios of flux densities, found previously by several workers, holds for the sample, with different slopes appearing to exist for the warmer and colder galaxies in the sample. It is suggested that single photon heating of small grains, often the dominant source of 12 and 25 pm radiation from galaxies, significantly affects the emission of some galaxies at 60 pm, while optical depth effects appear to alter the emergent radiation at 12 and 25 pm. The warmer galaxies generally have less dust mass at a given infrared luminosity than do the cold galaxies. I. INTRODUCTION source with color corrected 60 pm flux density >5.4 Jy (roughly ten times the lowest measurable flux density of the The IRAS Bright Galaxy Sample (hereafter referred to as IRAS Point Source Catalog at 60 pm) in an area of the BG sample) was chosen as a representative sample of the —14,500° sq. with declination, <5 > — 30°, and Galactic lati- brightest extragalactic sources in the IRAS survey. The sam- tude, I > 30°. Sources were taken from the IRAS Point ple consists of all extragalactic sources brighter than 5.24 Jy Source Catalog Version 1.0 (PSC), the IRAS Catalog of at 60 pm, in an area of sky at high Galactic latitude. Soifer et Small Scale Structures (SSS), and a preliminary version of al. (1986) derived the far-infrared luminosity function for 10 the Catalog of IRAS Observations of Large Optical Galaxies the BG sample for far-infrared luminosities Z, > 10 L0. In (Rice et al. 1988). Analysis of the relationship between Paper I ( Soifer et a/. 1987 ), the full sample was described, 60 number counts and flux density, hereafter called the “log N- and 100 pm flux densities were reported for these galaxies, logS” relation, for this sample indicated that the sample is and the far-infrared luminosity function was derived for the complete to the flux density cutoff of 5.4 Jy. entire sample. This paper completes our examination of the The best flux density estimates at 60 and 100 pm for the IRAS observed properties of the BG sample. BG sample taken from the PSC, SSS, and Rice et al. ( 1988) Because the BG sample represents the brightest extraga- were reported in Paper I. No attempt was made in that paper lactic sources at 60 pm, it presents the best opportunity to to report data at 12 and 25 pm because the objects were often study the infrared properties of infrared bright galaxies. Fur- extended at these wavelengths, and in many cases no detec- thermore, the only selection criteria applied were area con- tions were reported in the aforementioned IRAS catalogs. straints and a flux-density limit at 60 pm. This sample thus In order to provide flux measurements for the sources in should be unbiased except for the specific 60 pm selection the BG sample at 12 and 25 pm, as well as to improve the 60 criterion, and thereby should present a well-defined view of and 100 pm flux estimates, improved IRAS measurements the infrared properties of infrared bright galaxies. for the BG sample were obtained from two sources. For gal- In this paper we report the 12, 25, 60, and 100 pm flux axies with large angular diameters, the IRAS flux densities densities for all the galaxies in the BG sample, using the most were taken from the Catalog of IRAS Observations of Large accurate reductions of the IRAS observations presently Optical Galaxies (Rice et al. 1988). For all other galaxies in available. The study of how the infrared properties of these the BG sample the IRAS data were reprocessed by the galaxies relate to their optical morphology is the subject of a addscan/scanpi processing (Helou et al. 1988) at the In- subsequent paper (Sanders cía/. 1989). frared Processing and Analysis Center. All the measure- IL THE SAMPLE AND DATA REDUCTION ments were brought onto the calibration scale of the PSC, Version 2.0. The selection criteria for the BG sample were described in After projecting the individual detector tracks onto a Paper I. Briefly, the original criteria were: any extragalactic “mean track” for the source, the addscan processing 766 Astron. J. 98 (3), September 1989 0004-6256/89/030766-32$00.90 © 1989 Am. Astron. Soc. 766 © American Astronomical Society • Provided by the NASA Astrophysics Data System .7663 767 SOIFER ETAL. : IRAS BRIGHT GALAXY SAMPLE 767 98. coadds in one-dimensional data from all IRAS detectors found to meet the 60 /zm flux-density criterion based on its crossing the position of the source. The data are coadded extended emission while searching for galaxies with low ra- after subtracting a second-order baseline fitted to the data tios of Sv (60i¿m)/Sv ( 100 /¿m). The sources that fall below within + of the central position (but excluding the data the new selection limit are listed in Table 1(b). Thus there 1989AJ within + 4 min). The result of this coaddition is a one di- are 313 sources with flux density at 60/zm Sv (60/zm) >5.24 mensional “drift scan” of flux density versus position along Jy in the statistically complete BG sample. the mean track. For all sources included in Paper I, the posi- For those sources that show evidence of extended emis- tion taken for the source was the position reported in Paper sion, i.e., those classified as marginally resolved (U + ) or I. For the large galaxies, the optical position of the galaxy resolved (R), additional data are included in Table II. The (de Vaucouleurs, de Vaucouleurs, and Corwin 1976) was contents of this table are described in Appendix B. For refer- assumed. For the three sources added from the PSC Version ence, the average values of the full widths at 25% and 50% of 2.0, the position was taken from that catalog. Analysis of the peak flux density are given in Table III as a function of wave- positional uncertainties of known sources (IRAS Explana- length for an unresolved source (Helou and Kopan 1988, tory Supplement 1988) suggests that the best positions for private communication). the infrared emission from the galaxies detected are those Table IV shows the distribution among the extent codes measured directly by IRAS. for the sources at each wavelength. Table IV reflects the The flux density of the source was estimated in several changing angular resolution of the IRAS instrument as a ways based on the coadded one-dimensional data. A “point- function of wavelength. While nearly § of the sources in the source template” was fitted to the source, to derive both the BG sample are resolved or marginally resolved at 12 and 25 “Point Source Catalog” equivalent flux density and the cor- /zm, with a detector width of more than half the sources relation coefficient of the fit. In addition, the total flux den- are unresolved at 60 /zm with a detector width of 1.5', and sity within + 4' of the source position was determined by more than | of the sources are unresolved at 100 /zm with integrating the flux density versus position data. The point- detector width of 3' (IRAS Explanatory Supplement 1988). source flux density and total flux density were derived for all four IRAS bands for all sources. After processing the data, the output was inspected for each source at all wavelengths IV. RESULTS to determine if the source was adequately fit by the point- a) Completeness of the Bright Galaxy Sample source template. If this was adequate, only the flux density from the point-source template fit was retained as the best estimator of the IRAS flux density.
Recommended publications
  • Arxiv:1904.07129V1 [Astro-Ph.GA] 15 Apr 2019
    Draft version April 16, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 SPIRE SPECTROSCOPY OF EARLY TYPE GALAXIES Ryen Carl Lapham and Lisa M. Young Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801; [email protected], [email protected] Draft version April 16, 2019 ABSTRACT We present SPIRE spectroscopy for 9 early-type galaxies (ETGs) representing the most CO-rich and far-infrared (FIR) bright galaxies of the volume-limited Atlas3D sample. Our data include detections of mid to high J CO transitions (J=4-3 to J=13-12) and the [C I] (1-0) and (2-1) emission lines. CO spectral line energy distributions (SLEDs) for our ETGs indicate low gas excitation, barring NGC 1266. We use the [C I] emission lines to determine the excitation temperature of the neutral gas, as well as estimate the mass of molecular hydrogen. The masses agree well with masses derived from CO, making this technique very promising for high redshift galaxies. We do not find a trend between the [N II] 205 flux and the infrared luminosity, but we do find that the [N II] 205/CO(6-5) line ratio is correlated with the 60/100 µm Infrared Astronomical Satellite (IRAS) colors. Thus the [N II] 205/CO(6-5) ratio can be used to infer a dust temperature, and hence the intensity of the interstellar radiation field (ISRF). Photodissociation region (PDR) models show that use of [C I] and CO lines in addition to the typical [C II], [O I], and FIR fluxes drive the model solutions to higher densities and lower values of G0.
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • 1501.01010V1.Pdf
    Draft version January 7, 2015 Preprint typeset using LATEX style emulateapj v. 5/2/11 JET-ISM INTERACTION IN THE RADIO GALAXY 3C293: JET-DRIVEN SHOCKS HEAT ISM TO POWER X-RAY AND MOLECULAR H2 EMISSION L. Lanz1, P. M. Ogle1, D. Evans2, P. N. Appleton3, P. Guillard4, B. Emonts5 Draft version January 7, 2015 ABSTRACT We present a 70ks Chandra observation of the radio galaxy 3C 293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 107 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C 293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C 293, typically have LH2 /LX ∼ 1 and MH2 /MX ∼ 1, whereas MOHEGs that are BCGs have LH2 /LX ∼ 0.01 and MH2 /MX ∼ 0.01.
    [Show full text]
  • Radio Sources in Low-Luminosity Active Galactic Nuclei
    A&A 392, 53–82 (2002) Astronomy DOI: 10.1051/0004-6361:20020874 & c ESO 2002 Astrophysics Radio sources in low-luminosity active galactic nuclei III. “AGNs” in a distance-limited sample of “LLAGNs” N. M. Nagar1, H. Falcke2,A.S.Wilson3, and J. S. Ulvestad4 1 Arcetri Observatory, Largo E. Fermi 5, Florence 50125, Italy 2 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany e-mail: [email protected] 3 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Adjunct Astronomer, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] 4 National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA e-mail: [email protected] Received 23 January 2002 / Accepted 6 June 2002 Abstract. This paper presents the results of a high resolution radio imaging survey of all known (96) low-luminosity active galactic nuclei (LLAGNs) at D ≤ 19 Mpc. We first report new 2 cm (150 mas resolution using the VLA) and 6 cm (2 mas resolution using the VLBA) radio observations of the previously unobserved nuclei in our samples and then present results on the complete survey. We find that almost half of all LINERs and low-luminosity Seyferts have flat-spectrum radio cores when observed at 150 mas resolution. Higher (2 mas) resolution observations of a flux-limited subsample have provided a 100% (16 of 16) detection rate of pc-scale radio cores, with implied brightness temperatures ∼>108 K. The five LLAGNs with the highest core radio fluxes also have pc-scale “jets”.
    [Show full text]
  • The Radio Properties of a Complete Sample of Bright Galaxies
    Aust. J. Phys., 1982,35,321-50 The Radio Properties of a Complete Sample of Bright Galaxies J. I. Harnett School of Physics, University of Sydney, Sydney, N.S.W. 2006. Abstract Results are given for the radio continuum properties of an optically complete sample of 294 bright galaxies, 147 of which have been detected. Data were obtained with the 408 MHz Molonglo Radio Telescope. The radio luminosity functions for all galaxies and for spiral galaxies alone are derived and the radio emission for different galaxy types is investigated. Spectral indices of 73 galaxies which had been detected at other frequencies were derived; the mean index of a reliable subsample is <ex) = -0,71. 1. Introduction There have been many extensive surveys of continuum radio emission from bright galaxies. The earliest comprehensive survey of high sensitivity was that of Cameron (1971a, 1971b) using the Molonglo Cross Radio Telescope at 408 MHz. Cameron observed two optically complete samples south of b = + 18° and defined the radio luminosity function with reasonable statistics at radio powers of ~ 1022 W HZ-I. In the past decade the optical properties of galaxies have been revised so that the selection of an optically complete sample is more reliable. In addition, between 1970 and 1978 the sensitivity of the 408 MHz Molonglo Cross was improved by more than a magnitude, permitting more detections and more accurate measurements of weak' radio emission. Before observations at 408 MHz with the Molonglo Cross ceased in 1978, a new survey was made to improve Cameron's results and provide the best possible data base for subsequent investigations at different frequencies.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Large-Scale Outflows in Edge-On Seyfert Galaxies. II. Kiloparsec
    Large-Scale Outflows in Edge-on Seyfert Galaxies. II. Kiloparsec-Scale Radio Continuum Emission Edward J. M. Colbert1,2, Stefi A. Baum1, Jack F. Gallimore1,2, Christopher P. O’Dea1, Jennifer A. Christensen1 Received ; accepted arXiv:astro-ph/9604022v1 3 Apr 1996 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 2 Department of Astronomy, University of Maryland, College Park, MD 20742 –2– ABSTRACT We present deep images of the kpc-scale radio continuum emission in 14 edge-on galaxies (ten Seyfert and four starburst galaxies). Observations were taken with the VLA at 4.9 GHz (6 cm). The Seyfert galaxies were selected from a distance-limited sample of 22 objects (defined in paper I). The starburst galaxies were selected to be well-matched to the Seyferts in radio power, recessional velocity and inclination angle. All four starburst galaxies have a very bright disk component and one (NGC 3044) has a radio halo that extends several kpc out of the galaxy plane. Six of the ten Seyferts observed have large-scale (radial extent >1 kpc) radio structures extending outward from the ∼ nuclear region, indicating that large-scale outflows are quite common in Seyferts. Large-scale radio sources in Seyferts are similar in radio power and radial extent to radio halos in edge-on starburst galaxies, but their morphologies do not resemble spherical halos observed in starburst galaxies. The sources have diffuse morphologies, but, in general, they are oriented at skewed angles with respect to the galaxy minor axes. This result is most easily understood if the outflows are AGN-driven jets that are somehow diverted away from the galaxy disk on scales >1 kpc.
    [Show full text]
  • Breaking the Radio – Gamma-Ray Connection in Arp 220
    MNRAS 000, 000{000 (0000) Preprint 16 January 2019 Compiled using MNRAS LATEX style file v3.0 Breaking the Radio { Gamma-Ray Connection in Arp 220 Tova M. Yoast-Hull? and Norman Murrayy Canadian Institute for Theoretical Astrophysics, University of Toronto, ON, M5S 3H8, Canada 16 January 2019 ABSTRACT Recent analyses of the γ-ray spectrum from the ultra-luminous infrared galaxy Arp 220 have revealed a discrepancy in the cosmic ray energy injection rates derived from the γ-rays versus the radio emission. While the observed radio emission is consistent with the star formation rate inferred from infrared observations, a significantly higher cosmic ray population is necessary to accurately model the measured γ-ray flux. To resolve this discrepancy between the radio and γ-ray observations, we find that we must increase the cosmic ray energy injection rate and account for an infrared optical depth greater than unity. Raising the energy injection rate naturally raises the total γ-ray flux but also raises the radio flux unless there is also an increase in the energy loss rate for cosmic ray leptons. A optically thick medium results in an increase in energy losses via inverse Compton for cosmic ray leptons and preserves agreement with submillimeter, millimeter, and infrared wavelength observations. Key words: cosmic rays { galaxies: individual (Arp 220) { galaxies: starburst { gamma rays: galaxies { radiative transfer { radio continuum: galaxies 1 INTRODUCTION collide with the ISM to produce neutral pions that subse- quently decay into γ-rays. Over the past decade, eight star-forming galaxies (mostly gi- In our current understanding, the correlation between ant spirals) have been detected in γ-rays by Fermi, including radio and FIR emission seen in star-forming galaxies requires M31 (NGC 0224), NGC 0253, NGC 1068, NGC 2146, M82 two additional conditions to hold.
    [Show full text]
  • Intensity Spots in the Cosmic Microwave Background Radiation and Distant Objects V
    Astronomy Letters, Vol. 27, No. 4, 2001, pp. 207–212. Translated from Pis’ma v Astronomicheskiœ Zhurnal, Vol. 27, No. 4, 2001, pp. 243–249. Original Russian Text Copyright © 2001 by Dubrovich. Formation Mechanisms of “Negative”-Intensity Spots in the Cosmic Microwave Background Radiation and Distant Objects V. K. Dubrovich* Special Astrophysical Observatory, Russian Academy of Sciences, pos. Nizhniœ Arkhyz, Stavropol kraœ, 357147 Russia Received June 2, 2000; in final form, October 2, 2000 Abstract—We consider the formation mechanisms of “negative”-intensity spots in the radio band for various astrophysical conditions. For wavelengths λ < 1.5 mm, the regions of reduced temperature (relative to the cos- mic microwave background radiation, CMBR) are shown to be produced only by high-redshift objects moving at peculiar velocities. The main processes are CMBR Thomson scattering and bremsstrahlung. We show that the effect δT/T can be ~ 10–5 in magnitude. We derive simple analytic expressions, which allow the redshifts, electron densities, and linear sizes of these regions to be estimated from observed spectral and spatial parame- ters. Additional observational methods for refining these parameters are outlined. © 2001 MAIK “Nauka/Inter- periodica”. Key words: theoretical and observational cosmology INTRODUCTION only two formation mechanisms of the “glow.” One of In the last 30 years, much attention has been given them is the Doppler distortion of external, equilibrium, to the search for and a detailed analysis of spatial fluc- and isotropic radiation (CMBR). For this to occur, the tuations in cosmic microwave background radiation object must have a peculiar velocity Vp and some non- zero opacity.
    [Show full text]
  • IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies
    Mon. Not. R. Astron. Soc. 000, 1{26 (2014) Printed 15 June 2018 (MN LATEX style file v2.2) Spitzer/IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies Seppo Laine,1? Johan H. Knapen,2;3 Juan{Carlos Mu~noz{Mateos,4:5 Taehyun Kim,4;5;6;7 S´ebastienComer´on,8;9 Marie Martig,10 Benne W. Holwerda,11 E. Athanassoula,12 Albert Bosma,12 Peter H. Johansson,13 Santiago Erroz{Ferrer,2;3 Dimitri A. Gadotti,5 Armando Gil de Paz,14 Joannah Hinz,15 Jarkko Laine,8;9 Eija Laurikainen,8;9 Kar´ınMen´endez{Delmestre,16 Trisha Mizusawa,4;17 Michael W. Regan,18 Heikki Salo,8 Kartik Sheth,4;1;19 Mark Seibert,7 Ronald J. Buta,20 Mauricio Cisternas,2;3 Bruce G. Elmegreen,21 Debra M. Elmegreen,22 Luis C. Ho,23;7 Barry F. Madore7 and Dennis Zaritsky24 1Spitzer Science Center - Caltech, MS 314-6, Pasadena, CA 91125, USA 2Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 3Departamento de Astrof´ısica, Universidad de La Laguna, 38206 La Laguna, Spain 4National Radio Astronomy Observatory/NAASC, Charlottesville, 520 Edgemont Road, VA 22903, USA 5European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile 6Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea 7The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA 8Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland 9Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie20, FIN-21500 Piikki¨o 10Max-Planck Institut f¨urAstronomie, K¨onigstuhl17 D-69117 Heidelberg, Germany 11Leiden Observatory, Leiden University, P.O.
    [Show full text]
  • Galaxies with Rows A
    Astronomy Reports, Vol. 45, No. 11, 2001, pp. 841–853. Translated from Astronomicheski˘ı Zhurnal, Vol. 78, No. 11, 2001, pp. 963–976. Original Russian Text Copyright c 2001 by Chernin, Kravtsova, Zasov, Arkhipova. Galaxies with Rows A. D. Chernin, A. S. Kravtsova, A. V. Zasov, and V. P. Arkhipova Sternberg Astronomical Institute, Universitetskii˘ pr. 13, Moscow, 119899 Russia Received March 16, 2001 Abstract—The results of a search for galaxies with straight structural elements, usually spiral-arm rows (“rows” in the terminology of Vorontsov-Vel’yaminov), are reported. The list of galaxies that possess (or probably possess) such rows includes about 200 objects, of which about 70% are brighter than 14m.On the whole, galaxies with rows make up 6–8% of all spiral galaxies with well-developed spiral patterns. Most galaxies with rows are gas-rich Sbc–Scd spirals. The fraction of interacting galaxies among them is appreciably higher than among galaxies without rows. Earlier conclusions that, as a rule, the lengths of rows are similar to their galactocentric distances and that the angles between adjacent rows are concentrated near 120◦ are confirmed. It is concluded that the rows must be transient hydrodynamic structures that develop in normal galaxies. c 2001 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION images were reproduced by Vorontsov-Vel’yaminov and analyze the general properties of these objects. The long, straight features found in some galaxies, which usually appear as straight spiral-arm rows and persist in spite of differential rotation of the galaxy 2. THE SAMPLE OF GALAXIES disks, pose an intriguing problem. These features, WITH STRAIGHT ROWS first described by Vorontsov-Vel’yaminov (to whom we owe the term “rows”) have long escaped the To identify galaxies with rows, we inspected about attention of researchers.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]