Lin-Et-Al-2018.Pdf
Received: 20 February 2017 Revised: 13 July 2017 Accepted: 17 July 2017 DOI: 10.1002/aqc.2831 RESEARCH ARTICLE Impacts of fishing, river flow and connectivity loss on the conservation of a migratory fish population Hsien‐Yung Lin1 | Christopher J. Brown2 | Ross G. Dwyer3 | Doug J. Harding4 | David T. Roberts5 | Richard A. Fuller1 | Simon Linke2 | Hugh P. Possingham1 1 Centre for Biodiversity and Conservation Science, School of Biological Sciences, The Abstract University of Queensland, St Lucia, QLD, 1. Migratory species depend on connected habitats and appropriate migratory cues to complete Australia their life cycles. Diadromous fish exemplify species with migratory life cycles by moving 2 The Australian Rivers Institute, Griffith between connected freshwater and saltwater habitats to reproduce. However, migration University, Nathan, QLD, Australia increases the exposure of fish to multiple threats and it is critical that managers integrate hab- 3 School of Biological Sciences, The University itat connectivity into resource management and conservation. of Queensland, St Lucia, QLD, Australia 4 Department of Natural Resources and Mines, 2. The benefit of alternative management actions was assessed for a diadromous fish, the Landcentre, Woolloongabba, Australia Australian bass Percalates novemaculeata, using a spatio‐temporal population model informed 5 Seqwater, Ipswich, QLD, Australia by individual‐based movement data. The management actions comprise seasonal closures Correspondence during the spawning season, and controlling fishing pressure by limiting catch or effort. Hsien‐Yung Lin, Centre for Biodiversity and Conservation Science, School of Biological 3. The benefits of implementing seasonal closures depend upon interactions among how fishing Sciences, The University of Queensland, St pressure is controlled, the response of anglers to fishery regulations and river flow regimes.
[Show full text]