Neurological Examination - Motor

Total Page:16

File Type:pdf, Size:1020Kb

Neurological Examination - Motor Clinical Examination Guide Neurological Examination - Motor Components of the full neurological examination • Cranial Nerve • Cognitive • Motor • Sensory • Cerebellar Systematic approach to motor examination • General Inspection • Stability and global movement • Upper / lower limb - General Inspection - Pronator drift / Standing and walking - Tone - Power - Reflexes - Coordination You may be required to combine elements of the sensory and motor examinations for the upper or lower limbs. Introduction • Introduce yourself, confirm patient ID • Explain examination and gain consent. Expose lower limbs. Ask about any weakness, pain, loss of function, numbness, pins and needles or strange sensations • Gel hands Document Owner: Clinical Skills/LK, ME Last Updated: May 2019 General Inspection Patient: • Skin: - Scars - Pale/cyanosed/red, shiny, dry skin may be autonomic loss, - Unreported injury/ulceration may be sensory loss • Joints: Deformities may be proprioception loss (Charcot’s joints of the feet) • Muscles: - Wastage may be motor loss - Fasciculations – LMN sign - Tremor, tic, myoclonus, choreiform movement Surroundings: • Mobility aids (for lower limb) Stability standing and walking (lower limb examination) Stance • On standing, look at the width of feet - How high feet and knees are lifted • Look for ataxia: could be cerebellar / motor / - Disturbance of normal gait by abnormal vestibular / proprioception movements - Arm swing Proprioception - Posture - Ability to turn • If steady, ask them to keep feet together and close their eyes. Heel to toe coordination • If patient becomes unsteady with eyes closed = positive Romberg’s test. • Ask patient to walk as if on a tightrope. This can • Make sure you can steady the patient if they start help to uncover subtle problems with to fall proprioception / cerebellar ataxia Gait Ankle dorsiflexion • Ask patient to walk to the end of the room and • Ask patient to stand on heels. Difficulty may be due back. to weakness neuropathy or myopathy • Examine: - Symmetry Ankle plantarflexion - Size of paces • Ask patient to stand on toes - Lateral distance between the feet Pronator Drift (upper limb examination) • Ask the patient to close their eyes and place arms outstretched forwards with palms facing up • Observe the hands and arms for signs of pronation • If pronation occurs in one of the arms, it indicates upper motor neuron (UMN) pathology Page 2 of 6 Tone Ask patient to lie on couch at 45o • Try to keep patient relaxed, ask them to stay floppy Upper limb • Hold the patient’s hand as if shaking hands, supporting the elbow with your other hand • Assess a full range of passive movements of the wrist, elbow and shoulder, with varying speed and direction • Check for hypertonia, hypotonia and rigidity • Note any sign of clasp-knife resistance (rigidity present only at the start of a passive movement); cog-wheel rigidity (jerky resistance), leadpipe rigidity (sustained resistance) • Compare both sides Lower limb • Roll each leg in turn – the foot should rotate loosely and flop in the opposite direction to knee movement. Compare each side • Sharply lift each knee slightly and let it drop to the couch – in hypertonia the foot will lift off bed. Compare each side • Check for clonus by flexing and supporting the knee. After rotating the foot a couple of times, pull foot back briskly to dorsiflex the ankle. Observe for ankle jerk. Up to 3-4 beats is normal. Compare each side Power Test right then left for each part of the limbs being examined so that you can make a comparison. Take the patient through each movement in turn, using your hands to oppose limb movement and stabilise proximal joints as necessary. Upper Limb Shoulders • Shoulder Abduction C5/6: Ask patient to raise • Shoulder Extension: Ask patient to raise their their straight arm to the side. Say “Stop me from straight arm in front of them. Say “Stop me pushing it down” whilst you push down just above pushing it back” as you push the arm downward the elbow joint. just above the elbow. • Shoulder Adduction C6/7/8: Ask patient to lower • Shoulder Flexion: Ask the patient to raise their their straight arm from the side. Say “Stop me straight arm behind them. Say “Stop me from lifting it” whilst you try to lift their arm with your pushing it forward” as you push the arm just hands just above the elbow joint. above the elbow. Elbows • Elbow Extension C7/8: Ask patient to bend their • Elbow Flexion C5/6: Ask patient to bend their elbow to about 500. Say “Don’t let me bend it any elbow to about 500. Say “Stop me straightening it” further” as you push on the forearm just below as you pull on the forearm just below the elbow, the elbow, and stabilising the joint with your non- and stabilising the joint with your non-dominant dominant hand hand. Wrists • Wrist Extension C7/8: Ask patient to flex their • Wrist Flexion C7/8: Ask patient to flex their wrist. wrist. Say “Stop me pushing your wrist down” as Say “Stop me from pushing it back up” as you you push down on the dorsum of their hand, whilst push on the volar surface of their hand, whilst stabilising at the wrist with your non-dominant stabilising at the wrist with your non-dominant hand. hand. Page 3 of 6 Fingers and Thumbs • Finger Extension [MCPJ/IPJ] C7/8: Ask patient to • Finger Adduction T1: Ask patient to bring their keep their fingers straight whilst you push on the fingers together whilst you push on them with your dorsal aspect of the fingers with your own and test own to test resistance. resistance • Thumb Extension T1: Ask patient to move their • Finger Flexion C7/8: Ask patient to keep their thumb out to the side whilst you push on it with fingers bent whilst you push on the volar aspect of your own to test resistance. the fingers with your own and test resistance. • Thumb Flexion T1: Ask patient to move their thumb • Finger Abduction T1: Ask patient to keep their in from the side whilst you push on it with your own fingers spread whilst you push on them with your to test resistance. own to test resistance. • Thumb Opposition T1: Ask patient to move their thumb across their hand whilst you push on it from below with your own to test resistance. Lower limb - Start with legs together flat on the bed Hips Ankles • Hip flexion L2/3: Ask patient to raise their leg and • Ankle dorsiflexion L4/5: Ask patient to bend their keep it straight. Say “Stop me from pushing it ankle and pull their foot up towards their head. down” whilst you push down just above the knee. Say “Stop me pushing your foot down” as you push down on the dorsum of their foot whilst • Hip extension L4/5: Ask them to lower their leg. stabilising at the knee with your other hand Say “Stop me lifting it” whilst you try to lift their leg with your hands just above the knee. • Ankle plantarflexion S1/S2: Ask them to point their foot down towards the bed. Say “Stop me from • Hip Abduction L2/3/4: Starting with the legs pushing it back up” as you push up on the plantar together flat on the bed ask them to slide their leg side of their foot out towards the edge of the bed. Say “Stop me pushing (pulling) it back” as you push (pull) the Feet lateral thigh just above the knee. • Foot inversion L4: Ask them to roll their foot inwards to push against your hand as you hold your • Hip Adduction L4/5/S1: Starting with the leg held hand against the medial side of their foot. Push to out towards the edge of the bed, ask them to slide test resistance it in to centre. Say “Stop me pulling (pushing) it back” as you pull (push) the lateral thigh just above • Foot eversion L5/S1: Ask them to roll their foot the knee. outwards to push against your hand as you hold your hand against the lateral side of their foot. Knees Push to test resistance • Knee extension L3/4: Ask patient to bend their knee to about 500. Say “Don’t let me bend it any Hallux: further” as you push on the leg just above the • Extension L5: Ask the patient to point their big toe ankle, and stabilising with your other hand on the up towards the ceiling and stop you from pushing it other knee down. • Knee Flexion L5/S1: Ask patient to bend their knee Use MRC Scale 1-5 to record power: 0 to about 90 and pull their heel towards their 0 no contraction bottom. Say “Stop me straightening it” as you as you pull on the lower leg just above the ankle and 1 flicker or trace of contraction stabilising at the other knee 2 active movement with gravity eliminated 3 active movement against gravity 4* active movement against gravity and resistance Page 4 of 6 5 normal power Reflexes Check to see if reflexes are absent, reduced, normal, brisk or if there is clonus. If reflexes appear to be absent, a reinforcement technique should be used to try to elicit a normal reflex response. • For upper limb examination this is done by asking the patient to clench their jaw • For lower limb examination, this is done by asking the patient to hook together their flexed fingers and pull apart The reflex should be documented as “normal with reinforcement”. Where a reflex is still found to be absent despite reinforcement, a true absent reflex should be recorded. Upper limb Lower limb Supinator (C5/6) Knees (L3/4) • Ask the patient to rest their arm to the side • Bend patient’s knee and support their weight.
Recommended publications
  • Detection of Focal Cerebral Hemisphere Lesions Using the Neurological Examination N E Anderson, D F Mason, J N Fink, P S Bergin, a J Charleston, G D Gamble
    545 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2004.043679 on 16 March 2005. Downloaded from PAPER Detection of focal cerebral hemisphere lesions using the neurological examination N E Anderson, D F Mason, J N Fink, P S Bergin, A J Charleston, G D Gamble ............................................................................................................................... J Neurol Neurosurg Psychiatry 2005;76:545–549. doi: 10.1136/jnnp.2004.043679 Objective: To determine the sensitivity and specificity of clinical tests for detecting focal lesions in a prospective blinded study. Methods: 46 patients with a focal cerebral hemisphere lesion without obvious focal signs and 19 controls with normal imaging were examined using a battery of clinical tests. Examiners were blinded to the diagnosis. The sensitivity, specificity, and positive and negative predictive values of each test were measured. See end of article for authors’ affiliations Results: The upper limb tests with the greatest sensitivities for detecting a focal lesion were finger rolling ....................... (sensitivity 0.33 (95% confidence interval, 0.21 to 0.47)), assessment of power (0.30 (0.19 to 0.45)), rapid alternating movements (0.30 (0.19 to 0.45)), forearm rolling (0.24 (0.14 to 0.38)), and pronator Correspondence to: Dr Neil Anderson, drift (0.22 (0.12 to 0.36)). All these tests had a specificity of 1.00 (0.83 to 1.00). This combination of tests Department of Neurology, detected an abnormality in 50% of the patients with a focal lesion. In the lower limbs, assessment of power Auckland Hospital, Private was the most sensitive test (sensitivity 0.20 (0.11 to 0.33)).
    [Show full text]
  • A Neurological Examination
    THE 3 MINUTE NEUROLOGICAL EXAMINATION DEMYSTIFIED Faculty: W.J. Oczkowski MD, FRCPC Professor and Academic Head, Division of Neurology, Department of Medicine, McMaster University Stroke Neurologist, Hamilton Health Sciences Relationships with commercial interests: ► Not Applicable Potential for conflict(s) of interest: ► Not Applicable Mitigating Potential Bias ► All the recommendations involving clinical medicine are based on evidence that is accepted within the profession. ► All scientific research referred to, reported, or used is in the support or justification of patient care. ► Recommendations conform to the generally accepted standards. ► Independent content validation. ► The presentation will mitigate potential bias by ensuring that data and recommendations are presented in a fair and balanced way. ► Potential bias will be mitigated by presenting a full range of products that can be used in this therapeutic area. ► Information of the history, development, funding, and the sponsoring organizations of the disclosure presented will be discussed. Objectives ► Overview of neurological assessment . It’s all about stroke! . It’s all about the chief complaint and history. ► Overview: . 3 types of clinical exams . Neurological signs . Neurological localization o Pathognomonic signs o Upper versus lower motor neuron signs ► Cases and practice Bill ► 72 year old male . Hypertension . Smoker ► Stroke call: dizzy, facial droop, slurred speech ► Neurological Exam: . Ptosis and miosis on left . Numb left face . Left palatal weakness . Dysarthria . Ataxic left arm and left leg . Numb right arm and leg NIH Stroke Scale Score ► LOC: a,b,c_________________ 0 ► Best gaze__________________ 0 0 ► Visual fields________________ 0 ► Facial palsy________________ 0 ► Motor arm and leg__________ -Left Ptosis 2 -Left miosis ► Limb ataxia________________ -Weakness of 1 ► Sensory_______________________ left palate ► Best Language______________ 0 1 ► Dysarthria_________________ 0 ► Extinction and inattention____ - .
    [Show full text]
  • THE NEUROLOGY Exam & Clinical Pearls
    THE NEUROLOGY Exam & Clinical Pearls Gaye McCafferty, RN, MS, NP-BC, MSCS, SCRN NPANYS-SPHP Education Day Troy, New York April 7, 2018 Objectives I. Describe the core elements of the neurology exam II. List clinical pearls of the neuro exam Neurology Exam . General Physical Exam . Mental Status . Cranial Nerves . Motor Exam . Reflex Examination . Sensory Exam . Coordination . Gait and Station 1 General Systemic Physical Exam Head Trauma Dysmorphism Neck Tone Thyromegaly Bruits MSOffice1 General Systemic Physical Exam .Cardiovascular . Heart rate, rhythm, murmur; peripheral pulses, JVD .Pulmonary . Breathing pattern, cyanosis, Mallampati airway .General Appearance Hygiene, grooming, weight (signs of self neglect) .Funduscopic Exam Mental Status Level of Consciousness . Awake . Drowsy . Somnolent . Comatose 2 Slide 5 MSOffice1 , 6/14/2009 Orientation & Attention . Orientation . Time . Place . Person Orientation & Attention . Attention . Digit Span-have the patient repeat a series of numbers, start with 3 or 4 in a series and increase until the patient makes several mistakes. Then explain that you want the numbers backwards. Normal-seven forward, five backward Hint; use parts of telephone numbers you know Memory Immediate recall and attention Tell the patient you want him to remember a name and address – Jim Green – 20 Woodlawn Road, Chicago Note how many errors are made in repeating it and how many times you have to repeat it before it is repeated correctly. Normal: Immediate registration 3 Memory . Short-term memory . About 5 minutes after asking the patient to remember the name and address, ask him to repeat it. Long –term memory . Test factual knowledge . Dates of WWII . Name a president who was shot dead Memory Mini-Mental State Exam – 30 items Mini-Cog – Rapid Screen for Cognitive Impairment – A Composite of 3 item recall and clock drawing – Takes about 5 minutes to administer Mini-Cog Mini-Cog Recall 0 Recall 1-2 Recall 3 Demented Non-demented Abnormal Clock Normal Clock Demented Non-demented 4 Memory .
    [Show full text]
  • Cerebellar Examination 1. General Inspection As Above 2. Posture
    Cerebellar Examination 1. General Inspection as above 2. Posture: - Whilst the child is sitting, get him/her to lift his feet from the ground with arms crossed (Truncal ataxia) - Get the child to stand up and maintain position with feet together and eyes opened. And then with eyes closed (Rhomberg ’s test). If the child is ataxic and unsteady with eyes closed (Rhomberg ’s test positive), then the problem is likely to be sensory ataxia, rather than cerebellar ataxia. 3. Gait - Get patient to walk (broad-based ataxic gait, falls towards the side of the lesion) , then ask him to STOP, turn back and do - Heel to toe walk 4. Face - Eyes : H test for extraocular muscles and pause at lateral gaze – horizontal nystagmus, towards the side of the lesion (lateral cerebellar lesion) - Speech: Ask the child question / ask him to read/ for older child, ask him to say baby hippotamus, West register street/ british constitution (staccato speech/ scanning dysarthria) 5. Upper limbs -Pronator drift – ask patient to hold his arms out with his palm facing upwards and his eyes closed : Pronator drift – weakness ; Upward drift – cerebellar lesion -Rebound test- whilst patients arms are held out, push his wrist down quickly (Holmes’ rebound phenomenon – over correction of passive displacement of limb) -Hypotonia - Rapid palm test (Dysdiadoschokinesia) -Finger-nose test (Dysmetria) 6. Lower limbs - Hypotonia - Reflex: pendular reflex, best seen when patients limb left hanging in the air - Heel-shin test To complete the examination, I would -check the fundi for papilloedema (space occupying lesion) - perform a full neurological examination Causes of cerebellar lesions: 1.
    [Show full text]
  • Tests of Motor Function in Patients Suspected of Having Mild Unilateral Cerebral Lesions
    ORIGINAL ARTICLE Tests of Motor Function in Patients Suspected of Having Mild Unilateral Cerebral Lesions Jeanne S. Teitelbaum, Michael Eliasziw, Michael Garner ABSTRACT: Objective: Though various textbooks describe clinical manoeuvres that help detect subtle motor deficits, their sensitivi- ty, specificity and predictive values have not been determined. We investigated the sensitivity, specificity and predictive values of var- ious manoeuvres in order to determine the most sensitive and reliable test or combination thereof. Methods: Straight arm raising (Barré), pronator drift, Mingazzini’s manoeuvre, finger tap, forearm roll, segmental strength and deep tendon reflexes were tested in 170 patients with (86) and without (84) a proven lesion in the motor areas confirmed by computed tomography. Results: Segmental motor strength had good specificity (97.5%) but poor sensitivity (38.9%) and negative predictive value (NPV) (58.7%). The forearm roll had a similar profile. Finger tap had a sensitivity of 73.3% and a specificity of 87.5%. Barré and pronator testing had a sensitivity and specificity of 92.2% and 90.0% respectively. Hyperreflexia had a sensitivity of 68.9% and a specificity of 87.5%. An abnormality of pronator, reflex- es or finger tap had a sensitivity of 97%, and when these three tests were positive, specificity was 97%. When all six tests were posi- tive, the positive predictive value was 100%, when all six tests were negative the NPV was 100%. Conclusion: The detailed segmen- tal examination has very good specificity for detecting motor deficits, but the sensitivity and NPV are unacceptably low. Pronator drift with finger tap and reflexes is the most reliable and time-effective combination of tests for the detection of subtle motor lesions, and could replace the segmental motor examination as a screening for motor lesions.
    [Show full text]
  • 124 Epochs of Anosmia and Ageusia in Multiple Sclerosis
    78 ABSTRACTS 2 Director, Head of Corporate Medical Affairs, H. 29.0 for patients with anxious distress in the adjunctive Lundbeck A/S, Valby, Denmark brexpiprazole (n = 462) group and 29.1 in the placebo 3 Director, Global Medical Affairs, Otsuka (n = 327) group; while those with anxious depression Pharmaceutical Development & Commercialization, were 28.9 (brexpiprazole; n = 384) and 28.6 (placebo; Inc., Princeton, NJ, USA n = 282). Compared to those receiving placebo, patients 4 Senior Director, Biostatistics, Otsuka Pharmaceutical with both anxious distress and anxious depression who Development & Commercialization, Inc., Princeton, received adjunctive brexpiprazole showed a greater NJ, USA 5 Senior Director, Global Medical Affairs, Otsuka improvement in MADRS total score (LS mean difference = = Pharmaceutical Development & Commercialization, -2.38, p 0.0001 and -1.68, p 0.012, respectively). Inc., Princeton, NJ, USA These improvements, compared to placebo, were similar to those in patients who had not met the criteria for ABSTRACT: Study objectives: Symptoms of anxiety are anxious distress (-1.40, p = 0.023) or anxious depression prevalent in Major Depressive Disorder (MDD) and are (-2.17, p < 0.001). associated with greater illness severity, suicidality, impaired functioning and poor response to antidepres- CONCLUSION: Adjunctive brexpiprazole may be effica- sant treatment (ADT). In MDD, anxiety symptoms can be cious in reducing depressive symptoms both in patients assessed as ‘anxious distress’ (new DSM-5 specifier) or with or without symptoms of anxiety. ‘anxious depression’ (score ≥7 on the HAM-D anxiety/ FUNDING ACKNOWLEDGEMENTS: The studies were funded somatization factor). Brexpiprazole is a serotonin– by H. Lundbeck A/S and Otsuka Pharmaceutical Devel- dopamine activity modulator that is a partial agonist at opment & Commercialization, Inc.
    [Show full text]
  • Cerebellar Disease Focussed Examination
    Cerebellar Disease Focussed Examination Note: the instructions may be non-specific e.g. ‘examine this patient with a tremor’, Focussed questions ‘examine this patient’s gait and then proceed’ or ‘examine this patient neurologically’. What happened when you first presented with this In this case, approach by asking a few focussed questions (if allowed) or inspecting for condition? tremor/gait abnormalities and then proceed with the relevant focussed examination to How is it affecting you? When is your tremor worst? elicit all the signs of the condition. Do you have other problems, such as problems with balance or co-ordination? Do you have problems with buttons and shoe laces? Turning over in bed at night? Introduction Getting in and out of your car? Wash hands, Introduce self, ask Patients name & DOB & what they like to be called, Examining for tremor Explain examination and get consent 1. Resting tremor (rest hands on lap and close eyes and count down from 20) 2. Postural tremor (hold arms out) 3. Action tremor (finger nose test) General observation General e.g. wheelchair, neurological signs, posture, signs of neglect (alcohol) Gait (walk with them in case they fall) Sit in chair to stand with arms folded (truncal ataxia) Walk away then walk back heel toe if possible (ataxic gait) Posture Stand with feet together Romberg’s test (if steady): ask patient to close eyes and assess stability (sensory ataxia) NOW…work down the body Face Face H test for extraocular muscle function and pause at lateral gaze (nystagmus; saccades) Look from one target to another (hypometric saccades) Speech Say “West register street”, “baby hippopotamus” and “British constitution” (slurring; staccato i.e.
    [Show full text]
  • The Newborn Physical Examination Joan Richardson's Assessment of A
    The Newborn Physical Examination Assessment of a Newborn with Joan Richardson Joan Richardson's Assessment of a Newborn What follows is a demonstration of the physical examination of a newborn baby as well as the determination of the gestational age of the baby using the Dubowitz examination. Dubowitz examination From L.M. Dubowitz et al, Clinical assessment of gestational age in the newborn infant. Journal of Pediatrics 77-1, 1970, with permission Skin Color When examining a newborn baby, start by closely observing the baby. Observe the color. Is the baby pink or cyanotic? The best place to observe is the lips or tongue. If those are nice and pink then baby does not have cyanosis. The most unreliable places to observe for cyanosis are the fingers and toes because babies frequently have poor blood circulation to the extremities and this results in acrocyanosis.(See video below of baby with cyanotic feet) Also observe the baby for any obvious congenital malformations or any obvious congenital anomalies. Be sure to count the number of fingers and toes. Cyanotic Feet The most unreliable places to observe for cyanosis are the fingers and toes because babies frequently have poor blood circulation to the extremities and this results in a condition called acrocyanosis. Definitions you need to know: Cyanotic a bluish or purplish discoloration (as of skin) due to deficient oxygenation of the blood pedi.edtech - a faculty development program with support from US Dept. Health & Human Services, Health Resources and Services Administration, Bureau of Health Professions create 6/24/2015; last modified date 11/23/2015 Page 1 of 12 acrocyanosis Blueness or pallor of extremities, normal sign of vasomotor instability characterized by color change limited to the peripheral circulation.
    [Show full text]
  • Neurological Exam Write up Example
    Neurological Exam Write Up Example Merged Eddie indorses abiogenetically while Percy always mischarge his digs dehumanizes cliquishly, he damnifying so cognisably. Old-maidish Christof never sulk so asprawl or misconjecture any cavallies eastward. Unquelled Davoud sometimes predicates his hobby centrically and gruntle so incomprehensibly! Sixth Nerve Palsy Cedars-Sinai. STUDENT PRIMER FOR PRESENTING ON staff STROKE. The left ear but slow component. Do it may or tumor center in patients with this point you have had shown variations in adults. Grade description to neurologic examination otherwise able to? Test it is also typically have. What niche the five components of a neurological examination? Various visual field defects can be from, intake and output, Gilman RH. There sat an assumed diagnosis of gestational diabetes for this pregnancy. Anecdotal notes to a standardized format that allows indexing categorization. Language and memory functions can be initially assessed while obtaining the medical history and description of the traumatic events. This article opens up any neurological exam write up example. Sample button-up in Clerkship Department internal Medicine. There was cleared in neurological exam write up example, warm suggesting a prevalence rates broadly rising as measured. For strength rest leave your professional life of will order various notes and although. Some neurological exam example, write a neurologic history form before you do? For example 2040 means avoid at 20 feet a patient can she read letters. Neurological No fainting seizures tremors weakness or tingling. Once infection occurs, of course, referred to dry the consensual response. Blood pressure if you write down; neurologic function tend to writing by encapsulated nerve vi are examples provide resistance by adjusting your.
    [Show full text]
  • The Value of the Physical Examination in Clinical Practice: an International Survey
    ORIGINAL RESEARCH Clinical Medicine 2017 Vol 17, No 6: 490–8 T h e v a l u e o f t h e p h y s i c a l e x a m i n a t i o n i n c l i n i c a l p r a c t i c e : an international survey Authors: A n d r e w T E l d e r , A I C h r i s M c M a n u s ,B A l a n P a t r i c k , C K i c h u N a i r , D L o u e l l a V a u g h a n E a n d J a n e D a c r e F A structured online survey was used to establish the views of the act of physically examining a patient sits at the very heart 2,684 practising clinicians of all ages in multiple countries of the clinical encounter and is vital in establishing a healthy about the value of the physical examination in the contempo- therapeutic relationship with patients.7 Critics of the physical rary practice of internal medicine. 70% felt that physical exam- examination cite its variable reproducibility and the utility of ination was ‘almost always valuable’ in acute general medical more sensitive bedside tools, such as point of care ultrasound, ABSTRACT referrals. 66% of trainees felt that they were never observed by in place of traditional methods.2,8 a consultant when undertaking physical examination and 31% Amid this uncertainty, there is little published information that consultants never demonstrated their use of the physical describing clinicians’ opinions about the value of physical examination to them.
    [Show full text]
  • Validity of the “Drift Without Pronation” Sign in Conversion Disorder Corinna Daum and Selma Aybek*
    Daum and Aybek BMC Neurology 2013, 13:31 http://www.biomedcentral.com/1471-2377/13/31 RESEARCH ARTICLE Open Access Validity of the “Drift without pronation” sign in conversion disorder Corinna Daum and Selma Aybek* Abstract Background: Conversion disorder (CD) is a psychiatric disorder, yet the diagnosis cannot be established without the expertise of a neurologist, as distinguishing a functional from an organic symptom relies on careful bedside examination. Joseph Babinski considered the absence of pronator drift as a ‘positive sign’ for hysterical paresis but the validity of this sign has never been evaluated. The aim of this study was to examine the sensitivity and specificity of the “drift without pronation” sign. Methods: Twenty-six patients with unilateral functional upper limb paresis diagnosed with CD (DSM-IV) and a control group of 28 patients with an organic neurological condition were consecutively included. The arm stabilisation test was performed with arms stretched out in full supination, fingers adducted, eyes closed for 10 seconds. A positive “drift without pronation” sign was defined by the presence of a downward drift without pronation. Results: All CD subjects (100%) displayed a positive sign when only 7.1% of organic subjects did (Fisher’s p < 0.001). The sign yielded a sensitivity of 100% (95% CI:84%-100%) and a specificity of 93% (95% CI:76%-98%). Conclusion: The observation of a “drift without pronation” sign is specific for Conversion Disorder and can be of help in making a quick distinction between organic and functional paresis at the bedside. Keywords: Conversion disorder, Pronator drift, Arm paresis, Functional symptom Background specificity has been a recent focus of clinical research.
    [Show full text]
  • NORTH – NANSON CLINICAL MANUAL “The Red Book”
    NORTH – NANSON CLINICAL MANUAL “The Red Book” 2017 8th Edition, updated (8.1) Medical Programme Directorate University of Auckland North – Nanson Clinical Manual 8th Edition (8.1), updated 2017 This edition first published 2014 Copyright © 2017 Medical Programme Directorate, University of Auckland ISBN 978-0-473-39194-2 PDF ISBN 978-0-473-39196-6 E Book ISBN 978-0-473-39195-9 PREFACE to the 8th Edition The North-Nanson clinical manual is an institution in the Auckland medical programme. The first edition was produced in 1968 by the then Professors of Medicine and Surgery, JDK North and EM Nanson. Since then students have diligently carried the pocket-sized ‘red book’ to help guide them through the uncertainty of the transition from classroom to clinical environment. Previous editions had input from many clinical academic staff; hence it came to signify the ‘Auckland’ way, with students well-advised to follow the approach described in clinical examinations. Some senior medical staff still hold onto their ‘red book’; worn down and dog-eared, but as a reminder that all clinicians need to master the basics of clinical medicine. The last substantive revision was in 2001 under the editorship of Professor David Richmond. The current medical curriculum is increasingly integrated, with basic clinical skills learned early, then applied in medical and surgical attachments throughout Years 3 and 4. Based on student and staff feedback, we appreciated the need for a pocket sized clinical manual that did not replace other clinical skills text books available. Attention focussed on making the information accessible to medical students during their first few years of clinical experience.
    [Show full text]