WO 2013/188806 Al 19 December 2013 (19.12.2013) P O P C T
Total Page:16
File Type:pdf, Size:1020Kb
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/188806 Al 19 December 2013 (19.12.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/21 (2006.01) A61P 11/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 38/18 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2013/045954 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 14 June 2013 (14.06.2013) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/659,737 14 June 2012 (14.06.2012) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: THE REGENTS OF THE UNIVERSITY UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OF MICHIGAN [US/US]; 1600 Huron Parkway, 2nd TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Floor, Ann Arbor, Michigan 48109 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (72) Inventors; and TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (71) Applicants : BRALEY, Tiffany J. [US/US]; 7944 Hallie KM, ML, MR, NE, SN, TD, TG). Dr., Ypsilanti, Michigan 48198 (US). SEGAL, Benjamin [US/US]; 3 15 Second St. #214, Ann Arbor, Michigan Published: 48103 (US). CHERVIN, Ronald D. [US/US]; 3640 High- — with international search report (Art. 21(3)) landerway E., Ann Arbor, Michigan 48108 (US). (74) Agent: ISENBARGER, Thomas A.; Casimir Jones, S C., 2275 Deming Way, Suite 310, Middleton, Wisconsin 53562 (US). (54) Title: SLEEP APNEA TREATMENT (57) Abstract: Provided herein is technology relating to treating sleep apnea and particularly, but not exclusively, to treating sleep apnea with immunotherapeutics and/or anti-inflammatory drugs such as beta-interferons and glatiramer acetate. SLEEP APNEA TREATMENT This application claims priority to US Provisional Patent Application No. 61/659,737 filed June 14, 2012, which is herein incorporated by reference in its entirety. FIELD OF INVENTION Provided herein is technology relating to treating sleep apnea and particularly, but not exclusively, to treating sleep apnea with immunotherapeutic drugs such as beta-interferons and glatiramer acetate. BACKGROUND Obstructive sleep apnea (OSA) is a common medical condition that is characterized by repeated upper airway obstruction during sleep, despite efforts to breathe. Upper airway patency, normally maintained by afferent sensory input to cranial nuclei and efferent output to the upper airway, is altered in OSA. Patients often stop breathing hundreds of times during the night, limiting the amount of oxygen delivered to the brain and rest of the body. These pauses in breathing may eventually increase risk for stroke, myocardial infarction, arrhythmia, heart failure, and premature death. According to the National Heart, Lung, and Blood Institute, at least 1 in 10 people over the age of 65 suffer from sleep apnea. Other statistical measures demonstrate that approximately 2 — 4% of the adult population of the United States suffer from sleep apnea. Productivity losses associated with daytime sleepiness are significant and, as such, the economic burdens associated with sleep apnea are steadily increasing, thus making OSA a major public health concern. In addition to obstructive sleep apnea (OSA), central sleep apnea (CSA) is another common form of sleep-disordered breathing. Central sleep apnea results from recurrent complete or partial absence of respiratory effort and can be caused by impaired respiratory control at the level of the medullary reticular formation. Although in the general population the prevalence of CSA is lower than that of OSA, patients with disorders such as MS that affect the brainstem may be at increased risk for CSA or apnea-related sudden death. Cases of both obstructive and central sleep apnea in structural and ischemic brainstem syndromes are well documented. Accordingly, diagnosing and treating sleep apnea is important because of its strong association with and potential cause of several serious medical conditions, such as hypertension, cardiovascular disease, coronary artery disease, insulin-resistance diabetes, depression, and sleepiness-related accidents. Sleep apnea is a treatable risk factor for cardiovascular disease, motor vehicle accidents, fatigue, and decreased quality of life. Current treatments for sleep apnea are cumbersome and physically intrusive, such as administering continuous positive airway pressure (CPAP), which involves wearing a mask every night to splint the upper airway open during sleep. Some patients have surgery to treat their obstructive sleep apnea, and others use an oral appliance nightly. Currently, there are no effective pharmacologic treatments for obstructive sleep apnea. Consequently, drugs for treating sleep apnea will be life-altering to many throughout the world. SUMMARY Accordingly, provided herein is technology related to pharmacotherapies for treating sleep apnea, for example immunotherapeutic agents. In some embodiments, drugs used to treat multiple sclerosis (MS) are used. These drugs include a class of medications known as the beta -interferons (e.g., interferon beta- l a and interferon beta- lb) and another treatment called glatiramer acetate (e.g., marketed in some formulations as Copaxone). Other immunotherapeutics, some of which are administered orally, some of which are administered intravenously, and some of which are administered by subcutaneous or intramuscular injection, are also encompassed within the scope of the technology. In some modes of action, these medications work by modulating the immune system to reduce inflammatory processes. Accordingly, provided herein is technology related in some aspects to methods of treating a subject in need of a treatment for sleep apnea, for example, a method comprising administering an immunotherapy to a subject in need of a treatment for sleep apnea. In some embodiments, the immunotherapy is an anti ¬ inflammatory drug and in some embodiments, the immunotherapy does not have immunosuppressant activity. Many types of immunotherapeutics are contemplated as pharmacologic agents to treat sleep apnea. For example, in some embodiments the immunotherapeutic agent is a beta-interferon, in some embodiments the immunotherapeutic agent is glatiramer acetate, and in some embodiments the immunotherapeutic agent is BG00012. In specific embodiments of the technology, the beta-interferon is selected from the group consisting of interferon beta- l a and interferon beta- lb. The technology is not limited in the form of sleep apnea that is treated according to the methods provided herein. For example, in some embodiments, the sleep apnea is obstructive sleep apnea and in some embodiments the sleep apnea is a central sleep apnea. During the development of embodiments of the technology, data demonstrated that MS patients treated with immunotherapeutic agents had reduced sleep apnea. Accordingly, in some embodiments the methods comprise treating a subject who has MS or is suspected of having MS. However, many subjects suffering from sleep apnea do not also have MS; thus, in some embodiments, the subject does not have MS or is not suspected to have MS. Certain quantitative measures are used to assess the severity of a subject's sleep apnea. For example, in some embodiments the technology comprises a method wherein the subject has an apnea-hypopnea index (AHI) of at least 5 apnea episodes per hour of sleep, a significant component of central sleep apnea defined by a central sleep apnea index of at least 5 episodes per hour of sleep (e.g., in the absence of severe obstructive sleep apnea), and/or a central apnea index (CAI) that is at least 15 apnea episodes per hour of sleep in the presence of severe concomitant obstructive sleep apnea (apnea-hypopnea index greater than or equal to 30 episodes per hour of sleep). In some embodiments, the AHI and/or CAI are measured by polysomnography. In some embodiments, the subject has a regional brainstem dysfunction. Additionally, in some embodiments the subject has impaired respiratory control at the level of the medullary reticular formation! dysarthria or dysphagia! lower cranial nerve dysfunction! and/or midbrain, pontine, or medullary lesions. In some embodiments, the subject is a child (e.g., an infant, a prepubertal child) and the sleep apnea is a pediatric sleep apnea. The immunotherapeutic agent is used in some embodiments to provide a pharmaceutical formulation. Thus, in some embodiments, the technology relates to methods wherein a pharmaceutical formulation comprises the immunotherapy. In some embodiments, the pharmaceutical formulation is administered orally and in some embodiments the pharmaceutical formulation is administered by injection, e.g., subcutaneously, intramuscularly, etc. In some embodiments, patients are tested, e.g., to select subjects for treatment, to follow the course of treatment, to assess the effectiveness of treatment, to modify the treatment, etc. For example, in some embodiments, methods are provided further comprising testing the subject for sleep apnea. In some embodiments, the testing occurs before the administering. In some embodiments, the administering occurs before the testing. Additionally, some embodiments further comprise a second testing after the administering, and some embodiments further comprise a second administering after the testing.