WO 2013/138665 Al 19 September 2013 (19.09.2013) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2013/138665 Al 19 September 2013 (19.09.2013) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/138665 Al 19 September 2013 (19.09.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07C 279/04 (2006.01) A61P 35/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/155 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2013/031733 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 March 2013 (14.03.2013) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/61 1,967 16 March 2012 (16.03.2012) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: SANFORD-BURNHAM MEDICAL RE¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, SEARCH INSTITUTE [US/US]; 10901 North Torrey UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Pines Road, La Jaolla, CA 92037 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (72) Inventors: STRONGIN, Alex; 10901 North Torrey Pines MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, Road, La Jolla, CA 92037 (US). PELLECCHIA, Mauriz- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, io; 10901 North Torrey Pines Road, La Jolla, CA 92037 ML, MR, NE, SN, TD, TG). (US). BARILE, Elisa; 10901 North Torrey Pines Road, La Jolla, CA 92037 (US). Published: (74) Agent: HOSTETLER, Michael, J., PH. D.; Wilson — with international search report (Art. 21(3)) Sonsini Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 94304 (US). (54) Title: INHIBITORS OF FURIN AND OTHER PRO-PROTEIN CONVERTASES (57) Abstract: Disclosed herein are Furin/PC inhibitors for FIG. 13 inhibiting Furin and other Propprotein Convertases. Method of making the Furin/PC inhibitors, chemical and biological characterization of the Furin/PC inhibitors, and the use of the Furin/PC inhibitors to treat infectious diseases, cancers, and inflammatory/autoimmune disorders, are also disclosed. 96B22 96B23 Log (inhibitor] µ Μ 96B22 96B23 HillSlope 1.622 1.068 C50 0.003686 0.009096 INHIBITORS OF FURIN AND OTHER PRO-PROTEIN CONVERTASES CROSS-REFERENCE [0001] The present application claims benefit of U.S. Provisional Application No. 61/61 1,967, filed on March 16, 2012, which is incorporated herein by reference in its entirety. BACKGROUND [0002] Furin belongs to the subtilisin-like proprotein convertase family. Furin is a proprotein convertase that processes latent precursor proteins into their biologically active products. It is a calcium-dependent serine endoprotease that cleaves precursor proteins at their paired basic amino acid processing sites. Some of the Furin substrates are: proparathyroid hormone, transforming growth factor beta 1 precursor, prealbumin, pro-beta-secretase, membrane type-1 matrix metalloproteinase, beta subunit of pro-nerve growth factor and von Willebrand factor. SUMMARY OF THE DISCLOSURE [0003] Disclosed herein, in certain embodiments, are compounds having the general structure I or pharmaceutically acceptable salts thereof: A compound of Formula I, or a pharmaceutically acceptable salt, stereoisomer, tautomer, or prodrug thereof: wherein Ri is alkyl, cycloalkyl, heteroalicyclyl, aryl, or heteroaryl; R2 is alkyl, cycloalkyl, or heteroalicyclyl; R3 is -Z-guanidine or -Z-C(NH 2)=NH, wherein Z is aryl or heteroaryl; R is -W-C(NH 2)=NR', wherein W is aryl, thiophenyl, furanyl, oxazolyl, pyrrolyl, or picolinyl; and wherein R' is hydrogen or hydroxyl; R is -U-guanidine, wherein U is alkyl, cycloalkyl, heteroalicyclyl, aryl, or heteroaryl; X= -CH2-, -CH2-CH2-, -CH2NHC(=0)-, -CH2CH2C(=0)NH-, or -CH2C(=0)NH-; Y is -C¾-,-S(=0) 2-, or -C(=0)-. In some embodiments of the compound of Formula I, R' is hydrogen. In some embodiments of the compound of Formula I, R' is hydroxyl. In some embodiments of the compound of Formula I, Ri is a Ci-C alkyl. In some embodiments of the compound of Formula I, Ri is methyl. In some embodiments of the compound of Formula I, R2 is a C -C alkyl. In some embodiments of the compound of Formula I, R2 is isopropyl. In some embodiments of the compound of Formula I, U is C C alkyl. In some embodiments of the compound of Formula I, U is -(CH 2)3-. In some embodiments of the compound of Formula I, X is -CH2-. In some embodiments of the compound of Formula I, R3 is -Z-guanidine. In some embodiments of the compound of Formula I, Z is In some embodiments of the compound of Formula I, X is -CH2- and R3 In some embodiments of the compound of Formula I, Y is -CH 2-. In some embodiments of the compound of Formula I, R is -F, -CF3, -OCF3, -OCH3, or alkyl; and n is 0, 1, or 2. In a refinement, R7 is -F. In a further refinement, n is 1. In [0004] Further disclosed herein, in certain embodiments, are compounds of Formula II, or a pharmaceutically acceptable salt, stereoisomer, tautomer, or prodrug thereof: wherein: is alkyl, cycloalkyl, or heteroalicyclyl; R2 is -U-guanidine, wherein U is alkyl, cycloalkyl, heteroalicyclyl, aryl, or heteroaryl; Y is -CONH-, -S0 2NH-, -0-, -CH2-, -S-, -S02-, or -COS0 2NH-; Z is -CONH-, -S0 2NH-, -0-, -CH2-, -S-, -S0 2-, or -COS0 2NH-; R3 and R4 are each independently -F, -CF3, -OCF3, -OCH3, or alkyl; a and b are each independently 0, 1, or 2; and m and n are each independently 0, 1, 2, or 3. In some embodiments of the compound of Formula II, R is C C alkyl. In some embodiments of the compound of Formula II, R is isopropyl. In some embodiments of the compound of Formula II, U is Ci-C6 alkyl. In some embodiments of the compound of Formula II, U is -(CH 2) -. In some embodiments of the compound of Formula II, Y is -CONH-. In some embodiments of the compound of Formula II, Z is -S0 2NH-. In some embodiments of the compound of Formula II, m is 1 and n is 1. In some embodiments of the compound of Formula II, a and b are 0. In some embodiments, the compound of Formula [0005] Also disclosed herein, in certain embodiments, are pharmaceutical compositions comprising a Furin/PC inhibitor disclosed herein. [0006] Additionally disclosed herein, in certain embodiments, are methods of treating an infectious disease in a subject in need of such treatment. In some embodiments, the methods comprise administering a therapeutically effective amount of a Furin/PC inhibitor disclosed herein. In some embodiments, the infection disease is associated with influenza virus, human immunodeficiency virus 1, Ebola, measles, cytomegalovirus, and flaviviruses (Dengue, Yellow fever, West Nile, Japanese encephalitis and multiple additional related flaviviruses) and parasitic nemarodes. In some embodiments, the Furin/PC inhibitor neutralizes an esotoxin selected from the group consisting of anthrax toxin, pseudomonas exotoxin A, Shiga toxin, diphtheria toxin, tetanus and botulism neurotoxins, and combinations thereof. In some embodiments, the Furin/PC inhibitor neutralizes virulence of bacteria carrying the esotoxin. [0007] Further disclosed herein, in certain embodiments, are methods of treating a cancer in a subject in need thereof. In some embodiments, the methods comprise administering a therapeutically effective amount of a Furin/PC inhibitor disclosed herein. In some embodiments, the cancer is skin tumors, head and neck squamous cell carcinomas, astrocytoma, lung non-small cell carcinoma, or metastasis of colorectal cancer. [0008] Also disclosed herein, in certain embodiments, are methods of treating an autoimmune or inflammatory disease, disorder or condition in a subject in need thereof. In some embodiments, the methods comprise administering a therapeutically effective amount of a Furin/PC inhibitor disclosed herein. In some embodiments, the autoimmune or inflammatory disease is atherosclerosis, arthritis, or Alzheimer's Disease. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The technical features of the present disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which: [00010] FIG. 1 exemplifies the HPLC profile of Compound A; [0001 1] FIG. 2 exemplifies the MS profile of Compound A 2; [00012] FIG. 3 exemplifies the 1H NMR spectrum of Compound A in DMSO-d6; [00013] FIG. 4 exemplifies the HPLC profile Compound B; [00014] FIG. 5 exemplifies the 1H NMR spectrum of Compound B in deuterated PBS; [00015] FIG. 6 exemplifies the MS (MALDI) profile of Compound D; [00016] FIG. 7 exemplifies the HPLC profile of Compound D; [00017] FIG. 8 exemplifies the 1H NMR spectrum of Compound D in deuterated PBS; [00018] FIG. 9 exemplifies the HPLC profile of Compound E. [00019] FIG. 10 exemplifies the MS profile of Compound E; [00020] FIG. 11 exemplifies 1H NMR spectrum of Compound E in DMSO-d6; [00021] FIG.
Recommended publications
  • Mepact, INN-Mifamurtide
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT MEPACT 4 mg powder for concentrate for dispersion for infusion 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains 4 mg mifamurtide*. After reconstitution, each mL of suspension in the vial contains 0.08 mg mifamurtide. *fully synthetic analogue of a component of Mycobacterium sp. cell wall. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for concentrate for dispersion for infusion White to off-white homogeneous cake or powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications MEPACT is indicated in children, adolescents and young adults for the treatment of high-grade resectable non-metastatic osteosarcoma after macroscopically complete surgical resection. It is used in combination with post-operative multi-agent chemotherapy. Safety and efficacy have been assessed in studies of patients 2 to 30 years of age at initial diagnosis (see section 5.1). 4.2 Posology and method of administration Mifamurtide treatment should be initiated and supervised by specialist physicians experienced in the diagnosis and treatment of osteosarcoma. Posology The recommended dose of mifamurtide for all patients is 2 mg/m2 body surface area. It should be administered as adjuvant therapy following resection: twice weekly at least 3 days apart for 12 weeks, followed by once-weekly treatments for an additional 24 weeks for a total of 48 infusions in 36 weeks. Special populations Adults > 30 years None of the patients treated in the osteosarcoma studies were 65 years or older and in the phase III randomised study, only patients up to the age of 30 years were included.
    [Show full text]
  • Chemical Properties Biological Description Solubility
    Data Sheet (Cat.No.T4412) Roquinimex Chemical Properties CAS No.: 84088-42-6 Formula: C18H16N2O3 Molecular Weight: 308.34 Appearance: N/A Storage: 0-4℃ for short term (days to weeks), or -20℃ for long term (months). Biological Description Description Roquinimex (Linomide) is a quinoline derivative immunostimulant which increases NK cell activity and macrophage cytotoxicity; inhibits angiogenesis and reduces the secretion of TNF alpha. Targets(IC50) Others: None In vivo Prophylactic administration of DSS-treated mice with roquinimex significantly reduced clinical signs of colitis, MDS and the CH-reduction. Moreover, in roquinimex treated animals, the MPO activity was significantly reduced by more than 50% compared to DSS control mice. Notably, therapeutic administration of roquinimex in DSS-treated mice also significantly inhibited the MDS, CH-reduction and MPO activity. Linomide, a synthetic immunomodulator, at concentrations effective in vivo reduces the number of MBP-reactive TNF-alpha and increases MBP-reactive IL-10 and TGF-beta mRNA expressing MNC from MS patients' blood when analysed in vitro. Compared to dexamethasone, Linomide up-regulated levels of blood MNC expressing mRNA of TGF-beta after culture in presence of MBP Solubility Information Solubility DMSO: 83.3 mg/mL (270.17 mM) (< 1 mg/ml refers to the product slightly soluble or insoluble) Preparing Stock Solutions 1mg 5mg 10mg 1 mM 3.243 mL 16.216 mL 32.432 mL 5 mM 0.649 mL 3.243 mL 6.486 mL 10 mM 0.324 mL 1.622 mL 3.243 mL 50 mM 0.065 mL 0.324 mL 0.649 mL Please select the appropriate solvent to prepare the stock solution, according to the solubility of the product in different solvents.
    [Show full text]
  • Stems for Nonproprietary Drug Names
    USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol
    [Show full text]
  • Treatment of Experimental Autoimmune Encephalomyelitis in SJL/J Mice with a Replicative HSV-1 Vector Expressing Interleukin-5
    Gene Therapy (2011) 18, 646–655 & 2011 Macmillan Publishers Limited All rights reserved 0969-7128/11 www.nature.com/gt ORIGINAL ARTICLE Treatment of experimental autoimmune encephalomyelitis in SJL/J mice with a replicative HSV-1 vector expressing interleukin-5 M Nyga˚rdas1, C Aspelin1, H Paavilainen1,MRo¨ytta¨2,MWaris1 and V Hukkanen1,3 Experimental autoimmune encephalomyelitis (EAE) is an autoimmune inflammation of the central nervous system and is used as the experimental model of multiple sclerosis (MS). The exact mechanism behind the disease is still unknown, but interleukin (IL)-17 expressing T cells are thought to mediate the disease. Toll-like receptors (TLRs) are known to have a role in the innate immune response against pathogens, and several TLRs have also a role in the disease course of EAE. Here, we show that treatment with a herpes simplex virus type 1 vector expressing the Th2 cytokine IL-5 ameliorates EAE and decreases the numbers of infiltrating lymphocytes in the brain. The effect involves downregulation of TLR 2, 3 and 9 mRNA expression and upregulation of type I interferons (IFNs) in brains during onset of disease. The elevated expression of type I IFNs was also observed during recovery. Gene Therapy (2011) 18, 646–655; doi:10.1038/gt.2011.4; published online 17 February 2011 Keywords: experimental autoimmune encephalomyelitis (EAE); Herpes simplex virus (HSV); interleukin; interferon; Toll-like receptor INTRODUCTION but helpful in understanding the role of the different cytokines. Multiple sclerosis (MS) is a demyelinating autoimmune disease of the Th2 cytokines have, for example, been used for therapy of EAE, either central nervous system (CNS), characterized by infiltration of inflam- directly administered or expressed from viral vectors.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Kosei Et Al.Pdf
    This is a repository copy of Mifamurtide for the treatment of nonmetastatic osteosarcoma. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/98189/ Version: Submitted Version Article: Ando, K., Mori, K., Corradini, N. et al. (2 more authors) (2011) Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opinion on Pharmacotherapy, 2 (12). pp. 285-292. ISSN 1465-6566 https://doi.org/10.1517/14656566.2011.543129 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Expert Opinion On Pharmacotherapy For Peer Review Only Please download and read the instructions before proceeding to the peer review Mifamurtide for the treatment of non-metastatic osteosarcoma Journal: Expert Opinion
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • Analysis of Biological Treatments in Patients with Multiple Sclerosis in Estonia
    TALLINN UNIVERSITY OF TECHNOLOGY School of Information Technologies Kaidi Kruuspan 163484YVEM ANALYSIS OF BIOLOGICAL TREATMENTS IN PATIENTS WITH MULTIPLE SCLEROSIS IN ESTONIA Master’s thesis Supervisor: Katrin Gross-Paju MD, PhD Tallinn 2018 TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Kaidi Kruuspan 163484YVEM SCLEROSIS MULTIPLEX’I BIOLOOGILISE RAVI ANALÜÜS EESTIS Magistritöö Juhendaja: Katrin Gross-Paju MD, PhD Tallinn 2018 Author’s declaration of originality I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature and the work of others have been referred to. This thesis has not been presented for examination anywhere else. Author: Kaidi Kruuspan 14.05.2018 3 Abstract The aim of this thesis is to develop a model to analyse usage, cost and need of biological treatments in Estonia based on biological treatment used on patients with multiple sclerosis as a model. The aim is achieved by comparing the quality and availability of data in different databases. A statistical analysis was performed by using different databases (the State Agency of Medicines, the Estonian Health Insurance Fund and hospital databases). In addition, interviews were conducted with area experts. The results of synthesis and comparison of data demonstrate that even though databases provide various data, obtaining a full and comprehensive picture of the situation is complicated due to different limitations of databases. However, the trends of usage and cost can be inferred rather clearly. This thesis is written in English and is 78 pages long, including 6 chapters, 24 figures and 7 tables. 4 Annotatsioon Sclerosis multiplex’i bioloogiline ravi analüüs Eestis Bioloogiline ravi on elusorganismi poolt toodetud või sellest saadud ainet toimeainena sisaldavad ravimid, mida toodetakse biotehnoloogilistel meetoditel.
    [Show full text]
  • Mifamurtide Therapy
    NCCP Chemotherapy Regimen Mifamurtide Therapy INDICATIONS FOR USE: Regimen Reimbursement INDICATION ICD10 Code Status Mifamurtide can be used in combination with post-operative multi-agent chemotherapy for the treatment of high-grade resectable non-metastatic C41 00100a ODMS osteosarcoma after macroscopically complete surgical resection, in children, adolescents and young adults. This treatment is an option to be discussed with the patient (or parent of a child). TREATMENT: The starting dose of the drugs detailed below may be adjusted downward by the prescribing clinician, using their independent medical judgement, to consider each patients individual clinical circumstances. The recommended dose of mifamurtide for all patients is 2 mg/m2 body surface area. It should be administered as adjuvant therapy, in combination with post-operative multi-agent chemotherapy, following resection and recovery from surgery (usually +/- 3 weeks post operatively): twice weekly at least 3 days apart for 12 weeks, followed by once-weekly treatments for an additional 24 weeks for a total of 48 infusions in 36 weeks. Treatment should continue to completion or until unacceptable toxicity occurs. Please Refer to NCCP regimen 00463 (MAP) Methotrexate (12000mg/m2) DOXOrubicin (37.5mg/m2/day) and CISplatin (60mg/m2) Therapy which is usually used in conjunction with Mifamurtide Therapy. Day Drug Dose Route Diluent & Rate Weeks 1 and 4 Mifamurtide 2mg/m2 IV infusion 50ml* 0.9% NaCl over 60 1-12 inclusive minutes 1 13-36 inclusive *The final volume will be greater than 50 ml as the required dose is added to 50 ml 0.9% NaCl giving a total volume between 50 ml - 100 ml.
    [Show full text]