Nanoscientific Magazine 2019 Summer

Total Page:16

File Type:pdf, Size:1020Kb

Nanoscientific Magazine 2019 Summer NANOscientificVOL 17 SUMMER 2019 The Magazine for NanoScience and Technology RESPONSIVE HYDROGEL ADVANTAGES OF HIGH COATINGS FROM PECTIN VACUUM FOR ELECTRICAL POLYSACCHARIDES EXTRACTED SCANNING PROBE FROM ORANGE PEELS MICROSCOPY p. 11 AND CACTI p. 8 UTILIZATION OF SINGLE PARTICLE ICP-MS ANALYSIS FOR NANOPARTICLE PROBING THE REDUCTION IN INTERSECTION SEMICONDUCTOR OF NANOSCIENCE FABRICATION p. 18 AND BIOLOGY p. 14 NANOSCALE VACUUM CHANNEL TRANSISTOR ON SILICON AND SILICON CARBIDE p. 15 NEUTRINO ASTROPHYSICS p. 20 The Most Accurate Atomic Force Microscope To learn more about Park NX10 or to schedule a demo please visit www.parksystems.com/nx10 or email [email protected] A TRIBUTE TO TABLE CALVIN F. QUATE OF CONTENTS (1923–2019) NanoScientific Vol 17 Summer 2019 Figure 2: Au (60nm) NP Standard SEM image Message from Editor 5 A Tribute to Dr. Calvin Quate (1923-2019) 5 Keibock Lee, My Memories of Dr. Quate, Franz J. Glessibl p. 8 Editor-in-Chief Dr. Ken Nakajima Tokyo Institute of Technology: Using AFM for ISO in 7 Surface Chemistry Responsive Hydrogel Coatings From Pectin Polysaccharides Extracted 8 From Orange Peels and Cacti - Zeinab Veisi, Norma Alcantar, Ryan Toomey, Department of Chemical and Biomedical Engineering University of So. Florida Advantages of High Vacuum for Electrical Scanning Probe Microscopy 11 Jonathan Ludwig, Marco Mascaro, Umberto Celano, Wilfried Vandervorst, MESSAGE Kristof Paredis, imec, Leuven, Belgium p. 18 FROM EDITOR Probing the Intersection of NanoScience and Biology 14 Dr. Quate is best known for his role in Dr. Nathional Cady, Professor of NanoBioscience SUNY Polytechnic Welcome to our Summer Issue of NanoScientific. co-developing the atomic force Nanoscale Vacuum Channel Transistor on Silicon and Silicon Carbide 15 microscope (AFM) in the 1980’s with Dr. Jin-Woo Han, Senior Research Scientist at the Center for Nanotechnology, With the start of summer, the natural Dr. Cady will be presenting this entire Gerd Binnig and Christoph Gerber, a NASA Ames Research Center world is buzzing with life. Baby birds lecture at the 2nd Annual NanoScientific pioneering nano metrology tool heralded as the milestone that led to decades of Park Systems Atomic Force Microscope Product Display 16 are leaving the nest and you can spot Symposium at SUNY on Nov. 19, 2019. colorful butterflies emerge from their scientific advances and garnered them Utilization of Single Particle ICP-MS Analysis for Nanoparticle Reduction 18 chrysalis after just 10 to 14 days. The This issue also offers an inside look the Kavli Prize. The AFM established the in Semiconductor Fabrication - Lisa M. Mey-Ami, Jinjin Wang and Fuhe Li, Air p. 20 magnificence of biology in nature into the next-generation underground ability to advance scientific research Liquide Electronics - Balazs NanoAnalysis dumbfounds scientist to this day. neutrino detectors being built around exponentially and his PhD student, Dr. Sang-il Park, who brought this unique Feature Article: Neutrino Astrophysics: Seeing the Quantum Universe 20 Blazar emitting neutrinos and gamma rays. Photo Credit Ice Cube/NASA Nanoscience technology can help put the world and what they may tell us the puzzle pieces together of not just about the universe. We also share tool to the public, still manufactures his Park Systems Announces 2019 Park AFM Scholar Liliang Huang, PhD 24 Neutrino Astrophysics: Seeing the Quantum Universe the biology we can see, but also the an article on ISO Standards being innovative design today for scientists in Northwestern University Neutrinos are among the most abundant particles in the universe, a billion times more abundant than the unknown actions of particles we have developed for Surface Chemistry fields ranging from semiconductor to life Application Note: Probiotic Bacteria Topography and Nanomechanicalparticles that25 make up stars, planets and people. Neutrinos are produced in unimaginable quantities by the yet to image. Analysis and single particle inductively sciences. Properties Analysis Using Atomic Force Microscopy Sun and stars. Could they be the dark matter that controls the fate of the universe or explain why we live in a coupled plasma-mass spectrometry universe of matter and not antimatter? World-class, multipurpose detectors designed to solve the puzzle aboutIn this issue, we feature an article about (SP ICP-MS). Our application note is “Materials Matter” Column 2 - Supramolecular Chemistry, neutrinos are26 discussed in this article along with first hand updates from two of the Physicists working in this My Memories of Dr. Quate OFI cactus who make pectin naturally focused on Hivac Advantages of High Nanomachines, and AFM - Dr. Rigoberto Advincula, Professor, area. The detector research aims to get a clearer picture of the universe, creating a new era of science: Franz J. Giessibl neutrino astrophysics. that can teach us about responsive Vacuum for Electrical Scanning Probe Macromolecular Science & Engineering Case Western Reserve University It is impossible to forget the first time I p 9 hydrogel coatings from Pectin Microscopy and in the column Materials Super-Kamiokande is the large water Cherenkov detector located in Gifu Japan.p. The 23 construction was started in met Calvin Forrest Quate. It happened Polysaccharides in research being done Matter we examine Supramolecular 1991 and the observation began on April 1st, 1996 at the Scanning Tunneling Microscopy at the Department of Chemical and Chemistry, Nanomachines, and AFM. conference at the University of Oxford in NANOScientific is published TheINSET Super-Kamiokande PHOTO ONdetector COVER: consists of a stainlessusing-steel various tank, 39.3mimaging diameter modes. and 41.4m tall, filled with Biomedical Engineering, University of NANOscientific quarterly to showcase 50,000 tons of ultra pure water. About 13,000 photoHigh-multipliers quality are Scanning installed on the tank wall. The detector is 1988, where a group of students from locatedMolybdenum at 1,000 meter disulfide underground (MoS2) in the Kamioka-mine, Hida-city, Gifu, Japan. South Florida. This research explores Lastly, we honor the legendary, Dr. Keibock Lee, Editor-in-Chief advancements in the field of Tunneling Microscopy (STM) (continued on page 6) [email protected] is two-dimensional (2D) pectin polysaccharides, complex and Calvin Quate with a tribute from one nanoscience and technology One of the purposes of the Super-Kamiokande experimenttopography is to reveal of a athe multi-layer neutrino properties through the Debbie West, Content Editor across a wide range of layered material widely used observation of solar neutrinos, atmospheric neutrinosMoS2 and sample man-made acquired neutrinos. in In high 1998, from the observation of structurally diverse group of natural of his colleagues, his contribution to [email protected] multidisciplinary areas of atmosphericfor various neutrinos research we discovered field the neutrino oscillations which neutrinos are changing their types in flight. In vacuum without necessitating polymers that could lead towards nanoscience is far reaching and his love Byong Kim, Technical Director research. The publication is 2001,both solar industry neutrino oscillations and academy were discovered by the observation of solar neutrinos. In 2011, the third neutrino offered free to anyone who works oscillation mode was discovered by man-made nespecialutrino observation. sample prep/handling replacing petroleum-based polymers of science and new discoveries had a Debbie Bishop, Art Director for advanced semiconductor in the field of nanotechnology, using Park NX-Hivac SPM is with sustainable alternatives. worldwide impact on so many and he Richard Oettinger, Marketing Manager industry applications. nanoscience, microscopy and shown with high resolution was a true inspiration. other related fields of study and The characterization and Publisher & Corporate Officers visualization of islands and manufacturing. exploration of electrical and We also have an abstract from Park Systems Corporation grain boundaries in the mechanical properties of 2D Prof. Cady, who obtained his Ph.D. Sang-il Park, Chief Executive Officer We would enjoy hearing from topography image. in Microbiology and is currently a Karen Cho, VP of Finance material are one of the most you, our readers. Send your critical points in materials professor of nanobioscience in the Keibock Lee Keibock Lee, President research or story ideas to Editor-in-Chief Park Systems, Inc. [email protected] research field. The scanning College of Nanoscale Science at SUNY Franz J. Giessibl currently works at the 3040 Olcott Street probe microscope (SPM) allows Polytechnic Institute, called “Probing Institute of Experimental and Applied Physics, Santa Clara, CA 95054 To view all of our articles, please to evaluate 2D materials in the Intersection of Nanotechnology and University Regensburg where he does research [email protected] visit our web site at multidirectional viewpoints Biology”. in Condensed Matter Physics, Experimental www.parkystems.com www.nanoscientific.org Physics, Electronics and Mechanics. 4 NANOscientific www.nanoscientific.org NANOscientific 5 Stanford University wore red sweatshirts He asked about the project I was working joint papers, writing in an email in 2006 that showed the face of a man in raster on, and immediately offered that I call "Wonderful stuff Franz. Thanks for including lines, with "the face of things to come" him "Cal". After Binnig had applied for a me. I have gotten a lot
Recommended publications
  • Small Wonders the US National Nanotechnology Initiative Has Spent Billions of Dollars on Submicroscopic Science in Its First 10 Years
    NEWS FEATURE NATURE|Vol 467|2 September 2010 Simulation of the flow pattern for electrons travelling over a random nanoscale landscape. Small wonders The US National Nanotechnology Initiative has spent billions of dollars on submicroscopic science in its first 10 years. Corie Lok finds out where the money went and what the initiative plans to do next. ichard Smalley’s cheeks were gaunt and promised to conduct electricity better than It was a message that Washington was ready his hair was nearly gone when he testi- copper, but also had the potential to produce to hear. US President Bill Clinton formally fied before the US House of Representa- fibres 100 times stronger than steel at one- announced the initiative in 2000, with bipar- tives in June 1999. The Nobel laureate sixth of the weight. Smalley also predicted tisan support from Congress. The initiative R, HARVARD UNIV. HARVARD R, R E chemist had been diagnosed with non-Hodg- that the “very blunt tool” of chemotherapy that has faced some criticism in the decade since LL kin’s lymphoma a few months earlier, chemo- had ravaged his own body would be obsolete — most notably for its slowness to address E therapy was taking its toll, and the journey within 20 years, because scientists would engi- environmental, health and safety concerns H J. E. from Rice University in Houston, Texas, had neer nanoscale drugs that were “essentially about nanomaterials. But it has also created been exhausting. But none of that dimmed his cancer-seeking missiles” able more than 70 nano-related obvious passion for a subject that his listen- to target mutant cells with “As chemists, we academic or government ers found both mystifying and enthralling: minimal side effects.
    [Show full text]
  • Canada August 2007
    Self-Assembled Monolayers: Characterization and Application to Microcantilever Sensors Brian Seivewright Department of Chemistry McGill University, Montreal, Quebec, Canada August 2007 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy ©Copyright 2007 All rights reserved. Brian Seivewright, August 2007 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-50993-7 Our file Notre reference ISBN: 978-0-494-50993-7 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • 2017 ICU Honolulu Committees Executive Committee
    Publication Year: 2017 Copyright © 2017 ICU Honolulu and Acoustical Society of Korea 2017 ICUHonolulu, University of Hawaii at Manoa, and the Acoustical Society of Korea shall not be liable for personal injury or damage to property or damage caused by the use, manipulation, negligence or other methods of materials, products, guidelines or ideas contained herein. ISBN 979-11-5610-347-9 (95500) Aloha! Greetings from Hawai’i! We are pleased to invite you to the International Congress on Ultrasonics (ICU), which will be held in Honolulu Hawaii on December 18 - 20, 2017. This Congress brings together multidisciplinary subjects on all aspects of Ultrasonics and will lead us into the future of “Eco-sound.” The allure of Hawai`i is well known. However, few understand how deeply Aloha can energize our lives and renew our spirit. Come and join in the discussion on what’s being accomplished in our respective specialties. Relax your body but reinvigorate your mind as we all learn what role we can play in shaping our society. Our Congress success will rely on how well the Aloha spirit will make an extraordinary experience for all who attend. We welcome you in Waikiki, a paradise of “Green Sound.” Suk Wang Yoon President International Congress on Ultrasonics (ICU) / General Chair 2017 ICU Honolulu About the International Congress on Ultrasonics The International Congress on Ultrasonics (ICU) was constituted in 2005 as the result of the merger of two existing international Congresses: The World Congress on Ultrasonics (WCU) and Ultrasonics International (UI). The ICU is currently an international affiliated member of the International Commission for Acoustics (ICA), the parent organization of many national and regional acoustical societies.
    [Show full text]
  • UCSD NANOENGINEERING SEMINAR Thursday, September 1, 2016 Seminar Presentation: 2:00Pm – 3:00Pm
    UCSD NANOENGINEERING SEMINAR Thursday, September 1, 2016 Seminar Presentation: 2:00pm – 3:00pm Cymer Conference Center Is There Still More to Atomic Force Microscopy? Novel SPM Techniques for Cellular, Electronic and Optical Imaging Aykutlu Dâna UNAM Institute of Materials Science and Nanotechnology, Bilkent University, Turkey Abstract: Scanning probe microscopy (SPM) has been one of the driving forces of nanotechnology and materials science. Over the last three decades, a large variety of SPM techniques have been developed to address imaging of form, structure and properties of micro and nanoscale materials. Despite the availability huge diversity of techniques, here we show that there is still need and opportunity for developing novel approaches using the Atomic Force Microscope. Particularly, we report development of antifouling Atomic force microscopy (AFM) tips for imaging and nanomechanical characterization of biological samples in fluid. The antifouling tips enable stable high speed imaging of live cells for prolonged durations with no visible damage to the cell vitality. Images taken at speeds of 100 µm/s scan speed at 4 Hz line frequency allow observation of moving organelles in image sequences captured on Rat Mesenchymal Stem Cells. Initial results show the potential of the tips for 3D imaging of cells. Using antifouling tips, we demonstrate a new nanomechanical mapping approach that allows rapid characterization, namely double-pass force distance mapping, where the topography information is captured in the first pass and nanomechanical characterization is performed in the second pass. For electrical characterization, we discuss frequency mixing based electrostatic imaging that provides higher resolution and suppressed background electrical potential mapping. Also a sample modulated surface potential technique is demonstrated for mapping conductivity of 2D materials.
    [Show full text]
  • Probing Physical Properties at the Nanoscale
    University of Pennsylvania ScholarlyCommons Departmental Papers (MSE) Department of Materials Science & Engineering June 2008 Probing Physical Properties at the Nanoscale Matthew J. Brukman University of Pennsylvania Dawn A. Bonnell University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/mse_papers Recommended Citation Brukman, M. J., & Bonnell, D. A. (2008). Probing Physical Properties at the Nanoscale. Retrieved from https://repository.upenn.edu/mse_papers/152 Reprinted from Physics Today, Volume 61, Issue 6, June 2008. Publisher URL: http://scitation.aip.org/journals/doc/PHTOAD-ft/vol_61/iss_6/36_1.shtml This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mse_papers/152 For more information, please contact [email protected]. Probing Physical Properties at the Nanoscale Abstract Everyday devices ranging from computers and cell phones to the LEDs inside traffic lights exploit quantum mechanics and rely on precisely controlled structures and materials to function optimally. Indeed, the goal in device fabrication is to control the structure and composition of materials, often at the atomic scale, and thereby fine-tune their properties in the service of ever-more-sophisticated technology. Researchers have imaged the structures of materials at atomic scales for nearly half a century, often using electrons, x rays, or atoms on sharp tips (see the article by Tien Tsong in PHYSICS TODAY, March 2006, page 31). The ability to survey properties of the materials has proven more challenging. In recent years, however, advances in the development of scanning probe microscopy have allowed researchers not only to image a surface, but also to quantify its local characteristics— often with a resolution finer than 10 nm.
    [Show full text]
  • An Overview of the State of Chinese Nanoscience and Technology
    SMALL SCIENCE IN BIG CHINA An overview of the state of Chinese nanoscience and technology. Conducted in collaboration between Springer Nature, the National Center for Nanoscience and Technology, China, and the National Science Library of the Chinese Academy of Sciences. Ed Gerstner The National Center for Nanoscience and Springer Nature, China Minghua Liu Technology, China National Center for The National Center for Nanoscience and Technology, China (NCNST) was established in December 2003 by the Nanoscience and Chinese Academy of Science (CAS) and the Ministry of Education as an institution dedicated to fundamental and Technology, China applied research in the field of nanoscience and technology, especially those with important potential applications. Xiangyang Huang NCNST is operated under the supervision of the Governing Board and aims to become a world-class research National Science Library, centre, as well as public technological platform and young talents training centre in the field, and to act as an Chinese Academy of important bridge for international academic exchange and collaboration. Sciences The NCNST currently has three CAS Key Laboratories: the CAS Key Laboratory for Biological Effects of Yingying Zhou Nanomaterials & Nanosafety, the CAS Key Laboratory for Standardization & Measurement for Nanotechnology, Nature Research, Springer and the CAS Key Laboratory for Nanosystem and Hierarchical Fabrication. Besides, there is a division of Nature, China nanotechnology development, which is responsible for managing the opening and sharing of up-to-date instruments and equipment on the platform. The NCNST has also co-founded 19 collaborative laboratories with Zhiyong Tang Tsinghua University, Peking University, and CAS. National Center for The NCNST has doctoral and postdoctoral education programs in condensed matter physics, physical Nanoscience and chemistry, materials science, and nanoscience and technology.
    [Show full text]
  • Studies in Physics, Brain Science Earn $1 Million Awards 2 June 2016, by Malcolm Ritter
    Studies in physics, brain science earn $1 million awards 2 June 2016, by Malcolm Ritter Nine scientists will share three $1 million prizes for More information: Kavli Prizes: discoveries in how the brain can change over time, www.kavliprize.org how to move individual atoms around and how Albert Einstein was right again about the universe. © 2016 The Associated Press. All rights reserved. The Norwegian Academy of Science and Letters in Oslo on Thursday announced the winners of the Kavli Prizes, which are bestowed once every two years. The prize for astrophysics is shared by Ronald Drever and Kip Thorne of the California Institute of Technology and Rainer Weiss of the Massachusetts Institute of Technology. They were cited for the first direct detection of gravity waves, tiny ripples that spread through the universe. Einstein had predicted a century ago that the waves exist; the announcement that they'd been observed made headlines in February. The neuroscience prize is shared by Eve Marder of Brandeis University in Waltham, Massachusetts, Michael Merzenich of the University of California, San Francisco, and Carla Shatz of Stanford University. They were honored for discoveries in showing how the brain changes during learning and development, even as it keeps some basic stability over time. The prize for nanoscience—the study of structures smaller than bacteria for example—goes to Gerd Binnig of the IBM Zurich Research Laboratory in Switzerland, Christoph Gerber of the University of Basel in Switzerland and Calvin Quate of Stanford. They were honored for atomic force microscopy, a technique now widely used that can reveal the arrangement of individual atoms on a surface and remove, add or rearrange them.
    [Show full text]
  • Photonic Crystals
    Velkommen I Nanoskolen blir du kjent med nanomaterialer i form av partikler, tråder, filmer og faste materialer. Du lærer også om biologiske nanomaterialer og bruk i medisin, samt hvordan du kan få energi fra nanostrukturer. Timeplan MANDAG TIRSDAG ONSDAG TORSDAG FREDAG Start 8:30: Mottak, Gruppe 1: Gruppe 2: Gruppe 1: Gruppe 2: Gruppe 1: Gruppe 2: ALLE: registrering, beskjeder (Berzelius) Lab 1: Forelesning: Lab 2: Forelesning: Lab 3: Forelesning: Programmerings 9.00 – 9.30 Velkommen, info Nanopartikler Nano med Overflater Solceller med Spesielle Bionano med -teori med 09:00- 9.30 – 10:30 Bli-kjent leker Ola Torunn & egenskaper Elina (Curie) Haakon 11:30 10:30 – 10:45 Pause + Solcelle (Berzelius) Lasse (Berzelius) 10:45 – 11:30 Labboka og + Solcelle + Solcelle Forelesning: intro til Nano Forelesning: Nano med Programmering Nano med Ola med Arduino Ola 11:30- Lunsj / Utelek Lunsj / Utelek Lunsj / Utelek Lunsj / Utelek Lunsj / Utelek 12:30 12:30-12:45 Felles gange til Gruppe 1: Gruppe 2: Gruppe 1: Gruppe 2: Gruppe 1: Gruppe 2: ALLE: Forskningsparken/MiNa 12:45-13:45 MiNa/FP (De Forelesning: Lab 1: Forelesning: Lab 2: Forelesning: Lab 3: Programmering deles inn i grupper på hvert Nano med Nanopartikler Solceller med Overflater Bionano med Spesielle med Arduino sted som får hver sin Ola Torunn & Elina (Curie) egenskaper 12:30- omvisning) (Berzelius) + Solcelle Lasse + Solcelle 15:00 13:45-14:00 Bytte sted: + Solcelle Avslutning og MiNa/FP Forelesning: evaluering. 14:00-15:00 FP/MiNa (De Nano med deles inn i grupper på hvert Ola sted som
    [Show full text]
  • Nine Scientists Win Kavli Prizes Totaling $3 Million
    http://nyti.ms/1RStw1M SCIENCE Nine Scientists Win Kavli Prizes Totaling $3 Million By NICHOLAS ST. FLEUR JUNE 2, 2016 Nine scientists have won this year’s Kavli Prizes for work that detected the echoes of colliding black holes, revealed how adaptable the nervous system is, and created a technique for sculpting structures on the nanoscale. The announcement was made on Thursday by the Norwegian Academy of Science Letters in Oslo, and was live-streamed to a watching party in New York as a part of the World Science Festival. The three prizes, each worth $1 million and split among the recipients, are awarded in astrophysics, nanoscience and neuroscience every two years. They are named for Fred Kavli, a Norwegian- American inventor, businessman and philanthropist who started the awards in 2008 and died in 2013. The astrophysics prize went to Rainer Weiss from Massachusetts Institute of Technology, Ronald W.P. Drever from the California Institute of Technology and Kip S. Thorne, also from Caltech, for directly detecting gravitational waves. While using the Laser Interferometer Gravitational-Wave Observatory (LIGO) in September of last year, they observed wiggles in space-time that were first theorized by Albert Einstein in 1916, opening a new window on the universe. “The real credit for this goes to the whole LIGO team,” said Dr. Thorne, who attended the viewing party in New York with Dr. Weiss. “I wouldn’t be here without the people who started it, and it would not have succeeded without this team of a thousand people who made it happen.” The winners of the nanoscience prize are Gerd Binnig, formerly a member of the IBM Zurich Research Laboratory in Switzerland; Christoph Gerber from the University of Basel in Switzerland; and Calvin Quate from Stanford.
    [Show full text]
  • High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites Via the Capture of Preformed Nanoparticles in Scrolled Nanosheets
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-20-2013 High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets Shivaprasad Reddy Adireddy University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Inorganic Chemistry Commons, and the Materials Chemistry Commons Recommended Citation Adireddy, Shivaprasad Reddy, "High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets" (2013). University of New Orleans Theses and Dissertations. 1726. https://scholarworks.uno.edu/td/1726 This Dissertation-Restricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation-Restricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry By Shivaprasad Reddy Adireddy B.S.
    [Show full text]
  • Nanomaterials Synthesis and Assembly
    МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) Кафедра иностранных языков НАНОТЕХНОЛОГИЯ И МИКРОСИСТЕМНАЯ ТЕХНИКА Методические указания по английскому языку для практических занятий и самостоятельной работы студентов направления подготовки 28.03.01. 2 Курск 2016 УДК 811.111 (075) Составитель Е.Н. Землянская Рецензент Кандидат социологических наук, доцент Л.В. Левина Нанотехнология и микросистемная техника: методические указания по английскому языку для практических занятий и самостоятельной работы студентов направления подготовки 28.03.01 / Юго-Зап. гос. ун-т; сост. Е.Н. Землянская. - Курск, 2016. - 49 с. Библиогр.: с.49. Способствует формированию навыков перевода, а также усвоению не- обходимого минимума словарного состава текстов по направлению подго- товки, включая общенаучную и терминологическую лексику. Предназначены для практических занятий и самостоятельной работы студентов направления подготовки 28.03.01. Нанотехнология и микросистемная техника. Текст печатается в авторской редакции Подписано в печать 29.06.16. Формат 60х84 1/16. 2 3 Усл.печ. л. 2,6. Уч.-изд.л. 2,3.Тираж 100 экз. Заказ 648. Бесплатно. Юго-Западный государственный университет 305040, г. Курск, ул. 50 лет Октября, 94. Unit I Nanotechnology 1. Try to guess the meaning of the following international words. Look at these words again. Are they nouns (n), verbs (v) or ad- jectives (adj): Nanotechnology, control, atomic, molecular, structure, nanometer, material,
    [Show full text]
  • Nanotechnology in Green Chemistry-A Study
    [Murtaza , 3(2): February, 2014] ISSN: 2277-9655 Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Nanotechnology in Green Chemistry- A study Abida Murtaza Assistant Professor, Department of Humanities and Sciences, Polytechnic,Maulana Azad National Urdu University, Gachibowli, Hyderabad, India [email protected] Abstract Nanotechnologies as well as Nano scale technologies refer to the broad range of research and applications whose common trait is size. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in medicine, electronics, biomaterials and energy production. One nanometre (nm) is one billionth, or 10−9, of a meter which means nanometre to a meter is the same as that of a marble to the size of the earth. Green chemistry, also called sustainable chemistry encourages the design of products and processes which minimize the use and generation of hazardous substances. In this article the applications of Nanotechnology in different fields are summarized that reduce or eliminate the use or generation of toxic materials and also the synthesis of Nano material and their uses are discussed. However the people’s opinion about Nanotechnology throughout the world differs regarding its safe sustainability in future. Keywords : Nanotechnology, Green Chemistry, Nanometre, Nano scale, Mosfet. Introduction Nanotechnology (sometimes shortened to atoms, which are approximately a quarter of an nm "nanotech") is the manipulation of matter on an diameter) since nanotechnology must build its atomic and molecular scale. A more generalized devices from atoms and molecules. The upper limit is description of nanotechnology was subsequently more or less arbitrary but is around the size that established by the National Nanotechnology phenomena not observed in larger structures start to Initiative, which defines nanotechnology as the become apparent and can be made use of in the nano manipulation of matter with at least one dimension device.
    [Show full text]