TAC Register Rev 6 22 Feb 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
R&T Activities on Composite Structures
PUBLIC RELEASE R&T activities on composite structures for existing and future military A/C platforms at Airbus DS, Military Aircraft Mircea Calomfirescu, Rainer Neumaier, Thomas Körwien, Kay Dittrich Airbus Defence and Space GmbH Rechliner Str. 1 85077 Manching GERMANY [email protected] ABSTRACT This paper gives a short overview on the state of the art in composite aerostructures for civil and military aircraft. Major challenges are highlighted in this context and the requirements from military aircraft point of view are illustrated, derived from existing and future military aircraft perspectives. The main objective of the paper is to present the R&T activities in the aerostructure research program called FFS, advanced aerostructures. The activities range here from structural bonding, advanced radomes, new thermoplastic composite technologies and new materials and structures for low observability purposes. A brief insight is given to each of the topic highlighting the challenges and approaches, finishing with a summary of future trends and emerging technologies. 1.0 INTRODUCTION Composites offer several advantages over metallic aerostructures in civil as well as in military aircraft industry including reduced weight, less maintenance effort and costs due to “corrosion-free” composites and a superior fatigue behaviour compared to aluminium. The thermal expansion is much less and the material waste (“buy to fly ratio”) is more advantageous compared to aluminium structures. However, these advantages come along with higher material and manufacturing costs. For the prepreg technology for example the material has to be stored at -18°C, energy and investment intensive autoclaves are necessary and for quality assurance 100% non-destructive testing (NDT) is required in contrast to aluminium structures. -
ATR-42/72 Rev 6
U.S. Department of Transportation Federal Aviation Administration Washington, DC Flight Standardization Board (FSB) Report Revision: 6 Date: 10/14/2016 Manufacturer ATR – GIE Avions de Transport Régional Type Certification Data Sheet (TCDS) A53EU TCDS Identifiers ATR-42 ATR-72 ATR-42-200-300-320-500-600 ATR-72-101-102-201-202-211-212A-212 Pilot Type Rating ATR42 ATR72 Timothy C. Hayward, Chair Flight Standardization Board Federal Aviation Administration Flight Standards Division Seattle Aircraft Evaluation Group 1601 Lind Avenue SW Renton, WA 98057-3356 Telephone: (425) 917-6600 Fax: (425) 917-6638 Revision 6 10/14/2016 ATR-42/ATR-72 FSB Report RECORD OF REVISIONS REVISION SECTION PAGES DATE 1 9.2.4 17–27 01/10/1994 2 ALL ALL 02/01/1996 3 VARIOUS VARIOUS 07/01/1997 4 VARIOUS VARIOUS 7/15/2002 5 ALL ALL 12/05/2014 6 ALL ALL 10/14/2016 HIGHLIGHTS OF CHANGE All Sections All Pages: This revision contains minor editorial changes on every page for clarity, consistency, standardization, updated terminology, acronyms, and United States Workforce Rehabilitation Act Section 508 compliancy. Added Clarity for Training for Seat-Dependent Tasks (6.1.7 and 6.1.7). Added Clarity for Second-in-Command (SIC) Training Tasks (6.1.8). Added Clarity for Unique Training Provisions (6.2.6.1). Page 2 of 26 Revision 6 10/14/2016 ATR-42/ATR-72 FSB Report CONTENTS SECTION PAGE RECORD OF REVISIONS .......................................................................................................2 HIGHLIGHTS OF CHANGE ...................................................................................................2 1. PURPOSE AND APPLICABILITY .........................................................................................4 2. PILOT “TYPE RATING” REQUIREMENTS ..........................................................................7 3. “MASTER COMMON REQUIREMENTS” (MCRs) ..............................................................7 4. -
NPA 2018-13 Table of Contents
European Aviation Safety Agency Notice of Proposed Amendment 2018-13 Appendix I to AMC to Annex III (Part-66) Aircraft type ratings for Part-66 aircraft maintenance licences RMT.0541 (66.024) EXECUTIVE SUMMARY This Notice of Proposed Amendment (NPA) addresses a regulatory coordination issue related to aircraft type ratings. According to the AMC to Annex III (Part-66), type ratings should be endorsed on an aircraft maintenance licence (AML) in accordance with Appendix I to AMC to Part-66 ‘List of type ratings’. An NPA is issued regularly to amend this list, after assessing feedback received from the industry, and to add new aircraft types or to remove aircraft types whose type certificate (TC) has been revoked or surrendered. This NPA adds also the tables of the new Group as a consequence of the introduction of the ‘L’ licence subcategories by Commission Regulation (EU) 2018/1142. The main objective is to ensure a common standard throughout the Member States. Action area: Regular updates/review of rules Affected rules: AMC/GM to Annex III (Part-66) to Commission Regulation (EU) No 1321/2014 Affected stakeholders: Maintenance certifying staff; maintenance training organisations; maintenance organisations; competent authorities Driver: Efficiency/proportionality Rulemaking group: No Impact assessment: None Rulemaking Procedure: Standard 12.5.2009 5.12.2018 2019/Q2 TE.RPRO.00034-008 © European Aviation Safety Agency. All rights reserved. ISO 9001 certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA intranet/internet. Page 1 of 186 An agency of the European Union European Aviation Safety Agency NPA 2018-13 Table of contents Table of contents 1. -
Project Department of Automotive and Aeronautical
Project Department of Automotive and Aeronautical Engineering Aircraft Design Studies Based on the ATR 72 Author: Mihaela Florentina Niţă Examiner: Prof. Dr.-Ing. Dieter Scholz, MSME Delivered: 13.06.2008 Abstract This project gives a practical description of a preliminary aircraft design sequence. The sequence starts with a preliminary sizing method. The design sequence is illustrated with a redesign study of the ATR 72 turboprop aircraft. The requirements for the redesign aircraft are those of the ATR 72. The ATR 72 serves also as the reference during the redesign. The Preliminary sizing method was available (at the university) only for jet-powered aircraft. Therefore the method was adapted to work also with propeller driven aircrafts. The sizing method ensures that all requirements are met: take-off and landing field length, 2nd segment and missed approach gradients as well as cruise Mach number. The sizing method yields the best (low) power/weight ratio and the best wing loading. The redesign process covers all the aircraft components: fuselage, wing, empennage and landing gear. The aircraft design sequence defines the cabin layout, the wing parameters, the type of high lift system, the configuration and surface of the empennage. A mass distribution analysis is made, the position of the CG is calculated and the wing position determined. Finally the Direct Operating Costs (DOC) are calculated. DOCs are calculated applying the method from the Association of European Airlines (AEA). The DOCs serve for an aircraft evaluation. In order to meet requirements, the redesigned ATR 72 had to be slightly modified compared to the original ATR. -
Avation Increases to 35 Its Fleet of ATR 72S
Avation increases to 35 its fleet of ATR 72s ATR and the Singapore-based lessor announce 5 additional ATR 72-600s Singapore, February 16, 2016 – The world’s leading turboprop manufacturer ATR and the Singapore-based commercial aircraft lessor Avation PLC announced an agreement for the purchase of five new ATR 72-600 aircraft. At list prices the acquisition is valued at about US $130 million and brings to 35 the total number of firm ATR 72s ordered by Avation PLC since their first ATR purchase in 2011. As of today, Avation has already taken delivery of over 20 ATR 72s, mostly ATR 72-600s, which currently fly in the liveries of Virgin Australia, Flybe (for Scandinavian Airlines), UNI Air (Taiwan), Air India and Fiji Airways. Deliveries of the remaining ATR 72-600s on order extend out to 2018. ATR aircraft are the best-selling regional aircraft for below-90-seats size since 2010, representing 77% of global orders for turboprops. ATR is also experiencing an outstanding success among leasing firms in the same period, booking 87% of all their orders for below-90-seat regional aircraft. Avation is the second largest lessor by number of new ATRs ordered. According to Jeff Chatfield, Avation’s Executive Chairman, “We believe the ATR 72 is the most efficient aircraft type for regional routes. It provides the lowest fuel burn and the most reduced operating costs among all regional aircraft of its category. ATRs are superb assets for lessors, they offer great returns and also allow portfolio diversification. Avation raises equity and debt with the London and New York markets and we are proud to promote the ATR in these essential forums”. -
E N a C / Eetac Atr
E N A C / EETAC ATR FAA regulation analysis for ATR ETOPS validation Jordi CLARAMUNT SEGURA IENAC14 - Erasmus End of studies report / Treball Final de Grau 11/08/2017 FAA regulation analysis for ATR ETOPS validation 2 3 FAA regulation analysis for ATR ETOPS validation Acknowledgements With deepest gratitude and appreciation, I humbly give thanks to the people who helped me in making this end of studies project a possible one. First of all, I would like to offer my special thanks to Souhir Charfeddine, my internship tutor in ATR, for choosing me among the other candidates and giving me the possibility to perform this internship. Thanks for her valuable and constructive help during the planning and development of this internship. I really appreciate all the time she has dedicated to me with all the different meetings we have had inside the company. I have learnt a lot at her side, she has been an amazing tutor. Thank you. I am also grateful to all of those with whom I have had the pleasure to work with during this project. Each of the members I have worked with have provided me extensive and professional guidance and taught me a great deal about certification aspects, as well as other domains. Those include Antonio Paradies, Didier Cailhol, Eric Bédessem, Ciro Manco, Fabien Vançon, Jean-Paul Delpont, Nadège Gualina and Lucille Mitchell. Also, I would like to offer my gratitude to ENAC for first, giving me the possibility to join their Erasmus programme in its great university and then, for allowing me having the chance to do the internship, which has been the best election of my life so far. -
European Aviation Safety Agency
TCDS No.: EASA.A.084 ATR 42 - ATR 72 Page 1 of 35 Issue: 03 Date: 17 October 2012 European Aviation Safety Agency EASA TYPE-CERTIFICATE DATA SHEET No. EASA.A.084 for ATR 42 and ATR 72 Type Certificate Holder: ATR-GIE Avions de Transport Régional 1, Allée Pierre Nadot 31712 Blagnac Cedex FRANCE Transport Category: Large Aeroplanes For Models: ATR 42-200, ATR 42-300, ATR 42-320, ATR 42-400, ATR 42-500 ATR 72-101, ATR 72-102, ATR 72-201, ATR 72-202, ATR 72-211, ATR 72-212, ATR 72-212A TCDS No.: EASA.A.084 ATR 42 - ATR 72 Page 2 of 35 Issue: 03 Date: 17 October 2012 Intentionally left blank TCDS No.: EASA.A.084 ATR 42 - ATR 72 Page 3 of 35 Issue: 03 Date: 17 October 2012 TABLE OF CONTENTS SECTION 1: ATR 42 Series ...................................................................................... 4 I. General .......................................................................................................................... 4 II. Certification Basis .......................................................................................................... 5 III. Technical Characteristics and Operational Limitations .................................................11 IV. Operating and Service Instructions ..............................................................................18 SECTION 2: ATR 72 Series .................................................................................... 19 I. General .........................................................................................................................19 II. Certification -
Aircraft Tire Data
Aircraft tire Engineering Data Introduction Michelin manufactures a wide variety of sizes and types of tires to the exacting standards of the aircraft industry. The information included in this Data Book has been put together as an engineering and technical reference to support the users of Michelin tires. The data is, to the best of our knowledge, accurate and complete at the time of publication. To be as useful a reference tool as possible, we have chosen to include data on as many industry tire sizes as possible. Particular sizes may not be currently available from Michelin. It is advised that all critical data be verified with your Michelin representative prior to making final tire selections. The data contained herein should be used in conjunction with the various standards ; T&RA1, ETRTO2, MIL-PRF- 50413, AIR 8505 - A4 or with the airframer specifications or military design drawings. For those instances where a contradiction exists between T&RA and ETRTO, the T&RA standard has been referenced. In some cases, a tire is used for both civil and military applications. In most cases they follow the same standard. Where they do not, data for both tires are listed and identified. The aircraft application information provided in the tables is based on the most current information supplied by airframe manufacturers and/or contained in published documents. It is intended for use as general reference only. Your requirements may vary depending on the actual configuration of your aircraft. Accordingly, inquiries regarding specific models of aircraft should be directed to the applicable airframe manufacturer. -
Police Aviation News SPECIAL EDITION
Police Aviation News SPECIAL EDITION ©Police Aviation Research SPECIAL EDITION JULY 2012 PAR Police Aviation News July 2012 2 PAN—Police Aviation News is published monthly by POLICE AVIATION RESEARCH, 7 Wind- mill Close, Honey Lane, Waltham Abbey, Essex EN9 3BQ UK. Contacts: Main: +44 1992 714162 Cell: +44 7778 296650 Skype: BrynElliott E-mail: [email protected] SHOWS JULY 2012 FARNBOROUGH AIR SHOW Farnborough, Hampshire, UK 9-10 July 2012 Farnborough, one of the major shows in the aerospace calendar and yet in the main one not too kind to the Airborne Emergency Service sector of business. The large size and im- personal nature of Farnborough and its ilk are the main spur for the niche air events – not always shows – including PAvCon, NBAA and Heli-Expo. Visitors are drawn to see displays covering nearly 3,500 square meters from hundreds of international companies housed under cover in a number of vast halls and chalets con- structed at great expense – others being left to the vagaries of the weather without cover or in their own tents and caravans. And this year the vagaries were decidedly nasty as Britain endured the worst summer in living memory. The poor weather clearly affected visitor num- bers early in the week. As the browned grass testifies, Farnborough 2010 was a far drier affair than this year. © Aviation-images.com via FI2012 Front Cover Image: The Bell 525 Relentless has ‘Oil Industry’ written all over it and it may never feature as an emergency services aircraft. That said it has features that could one day appear more widely—including the pilots seats. -
NASA Technical Memorandum 0000
NASA/TM–2018-219833 Short-Haul Revitalization Study Final Report Ty V. Marien, Kevin R. Antcliff, Mark D. Guynn, and Douglas P. Wells Langley Research Center, Hampton, Virginia Steven J. Schneider and Michael Tong NASA Glenn Research Center, Cleveland, Ohio Antonio A. Trani and Nicolas K. Hinze Virginia Polytechnic Institute and State University, Blacksburg, Virginia Samuel M. Dollyhigh Analytical Mechanics Associates Inc., Hampton, Virginia May 2018 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the -
LY ABY 1990.03.15 Lėktuvas AN-2 2020.12.18 LY AEJ 1976.01.01
Nac. ženklas Reg. ženklas Pagaminimo metai Rūšis Tipas TSPPP galiojimas LY ABY 1990.03.15 Lėktuvas AN-2 2020.12.18 LY AEJ 1976.01.01 Lėktuvas AN-2 2020.10.24 LY AEK 1976.04.27 Lėktuvas AN-2 2021.10.15 LY AES 1981.02.05 Lėktuvas AN-2 2022.02.02 LY AEX 1987.09.29 Lėktuvas AN-2 2021.02.27 LY AFJ 1997.02.01 Lėktuvas JAK-52 2020.05.15 LY AGB 1981.02.04 Lėktuvas PZL-104 WILGA-35A 2018.06.19 LY AHA 1984.03.06 Lėktuvas AN-2 2021.05.27 LY AHJ 1983.12.01 Lėktuvas PZL-104 WILGA-35A 2021.06.29 LY AHL 1979.01.18 Lėktuvas PZL-104 WILGA-35A 2021.07.29 LY AHM 1978.12.30 Lėktuvas PZL-104 WILGA-35A 2021.07.16 LY AHN 1984.05.31 Lėktuvas PZL-104 WILGA-35A 2021.07.23 LY AHR 1980.11.10 Lėktuvas JAK-50 2021.08.19 LY AHY 1987.02.12 Lėktuvas JAK-52 2021.06.04 LY AHZ 1987.04.01 Lėktuvas JAK-52 2020.11.11 LY AIO 1975.01.01 Lėktuvas AN-2 2020.11.12 LY AIW 1987.04.29 Lėktuvas JAK-52 2021.10.27 LY AJC 1975.12.15 Lėktuvas PZL-104 WILGA-35A 2021.07.23 LY AJE 1979.10.17 Lėktuvas PZL-104 WILGA-35A 2021.06.09 LY AJF 1982.01.15 Lėktuvas PZL-104 WILGA-35A 2018.06.14 LY AJI 1981.12.23 Lėktuvas AN-2 2021.11.09 LY AJK 1979.08.09 Lėktuvas PZL-104 WILGA-35A 2020.11.21 LY AJM 1976.03.27 Lėktuvas PZL-104 WILGA-35A 2018.07.23 LY AJN 1978.12.30 Lėktuvas PZL-104 WILGA-35A 2021.09.08 LY AJP 1979.11.23 Lėktuvas PZL-104 WILGA-35A 2021.09.17 LY AJT 1979.11.28 Lėktuvas PZL-104 WILGA-35A 2020.12.03 LY AJX 1977.03.19 Lėktuvas PZL-104 WILGA-35A 2020.12.22 LY AJZ 1983.02.01 Lėktuvas PZL-104 WILGA-35A 2021.01.06 LY AKJ 1978.11.23 Lėktuvas PZL-104 WILGA-35A 2021.10.01 LY AKO 1970.01.01 Lėktuvas -
Audit of the Drug Enforcement Administration's
Office of the Inspector General U.S. Department of Justice Audit of the Drug Enforcement Administration’s Aviation Operations with the Department of Defense in Afghanistan Audit Division 16-16 March 2016 THIS PAGE LEFT INTENTIONALLY BLANK AUDIT OF THE DRUG ENFORCEMENT ADMINISTRATION’S AVIATION OPERATIONS WITH THE DEPARTMENT OF DEFENSE IN AFGHANISTAN EXECUTIVE SUMMARY In fiscal year 2008 the Drug Enforcement Administration (DEA) expended nearly $8.6 million to purchase an ATR 42-500 aircraft (ATR 500) to support its counternarcotics efforts in Afghanistan. The Department of Defense (DOD) agreed to modify the DEA’s ATR 500 with surveillance equipment and other capabilities to conduct such operations in the combat environment of Afghanistan in what became known as the Global Discovery program. In addition, through five Memoranda of Understanding (MOU) with the DOD, between fiscal years 2012 and 2015, the DEA received $29,080,137 from the DOD to support both the DEA’s counternarcotics aviation operations in Afghanistan and the Global Discovery program. As of February 2015, the DEA had expended $10.1 million of this funding for the Global Discovery aircraft. The DOD has also expended an additional $67.9 million in DOD appropriated funds to modify the DEA’s ATR 500 and to construct a hangar at the Kabul International Airport in Afghanistan for the aircraft. Even though collectively the DEA and DOD have spent more than $86 million on the Global Discovery program, we found that, over 7 years after the aircraft was purchased for the program, the aircraft remains inoperable, resting on jacks, and has never actually flown in Afghanistan.